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A magnetoelectric mapping is demonstrated between dephasing effects of the mag-
netic vector potential and effects of an effective vector potential describing spin-orbit
interaction. The experiments use spin-dependent mesoscopic quantum transport exper-
iments on the narrow-gap semiconductor InSb and the semimetal Bi, both materials
with strong spin-orbit interaction. The spin-orbit-induced antilocalization signature in
transport allows determination of spin coherence lengths in narrow InSb and Bi wires.
Spin coherence lengths are observed to increase with decreasing wire widths. The ge-
ometrical effect of width can be understood from the magnetoelectric duality between
the Aharonov-Bohm phase and the Aharonov-Casher phase.
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Spin-orbit interaction (SOI) in materials inspires the creation of effective gauge fields, and
can lead to new quantum states of matter constructed in analogy to quantum states at high
magnetic fields. Materials with strong SOI include the narrow-bandgap semiconductor InSb
and the semimetal bismuth, and are the focus of the present work. Spin-dependent meso-
scopic quantum transport experiments in submicron wires nanolithographically fabricated
from InSb and Bi epitaxial materials [1,2] show that the spin coherence lengths Lso increase
with decreasing wire widths w if other parameters stay constant. Other experiments [3–8],
as well as theoretical work [9] also indicate that Lso lengthens as w narrows, and this finding
has positive implications for nanoscaled spintronics. The emphasis of the present work lies
in showing that the result can be approached using the magnetoelectric duality between the
Aharonov-Bohm (AB) [10] phase under magnetic fields B and the Aharonov-Casher (AC)
[11–14] phase under SOI, and using a geometrical argument relying on the accumulation of
a Berry’s phase. Such magnetoelectric mapping between the physics of solid-state systems
under magnetic fields on one hand and under SOI on the other hand, could in fact be
extended to other dephasing phenomena induced by various Berry’s phase occurrences. As
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Magnetoelectric Mapping as Observed in Quantum Coherence Phenomena 11

Figure 1. Experimental values of Lso vs wire width for Bi wires (red circles, left-hand scale) and
InSb quantum well wires (blue stars, right-hand scale), obtained at 0.39 K. Lines are fits to a 1/width
dependence.

a corollary, the lengthening of Lso in narrow Bi wires is consistent with Bi having surface
states with strong Rashba-like SOI [2,15–17].

The method used to quantify Lso, together with the quantum phase coherence length
Lφ , is antilocalization (AL). The AL phenomenon originates in a quantum correction to
the magnetoresistance resulting from electron interference on time-reversed closed trajec-
tories in the material. As a quantum interference experiment AL can be used to measure
quantum coherence lengths, including Lso [9,18–20], using low-temperature magnetore-
sistance measurements. The magnetoresistance is characterized for sets of parallel wires
at low temperatures T ≈ 0.39 K and at low B applied perpendicularly to the plane of the
heterostructure or thin film samples. The wires are in the quasi-one-dimensional (Q1D)
regime, where w, Lso, Lφ and the elastic mean-free-path le are all comparable. The analysis
therefore uses a Q1D AL theory [1,8,21], which allows quantitative determination [19–22]
of Lso and Lφ as obtained from a fit of the experimental wire conductance G(B) to theory.
Measured is the change in resistance R = 1/G under applied B, whereas AL theory models
�G = G(B) − G(B = 0). Yet using the measured �R = R(B) − R(0) and realizing that
�R/R2 ≈ − �G, theory and experiment can be fitted.

Wires of different width were fabricated on Bi(111) (rhombohedral notation) thin films
and on InSb/InAlSb heterostructures, using electron-beam lithography and wet and reactive
ion etching, respectively. Bi(111) thin films were thermally evaporated from a Bi (99.999%)
source onto SiO2 (oxidized Si(001)) substrate [2,23]. Bi film growth of thickness 75 nm
[23], resulted in a trigonal axis perpendicular to the substrate [24], with grains of size
200–500 nm randomly oriented, such that the Bi(111) trigonal face was exposed. The films
showed compensated electron and hole densities, ∼ 2 × 1024 m−3 indicative of high-quality
Bi (mobilities ∼ 0.1 m2/Vs). However, the AL measurements were dominated by the surface
carriers of Bi(111) [15–17], particularly from the surface electron pocket. Wires of length
L = 16 μm were fabricated on the Bi(111) thin films. The InSb quantum well of thickness
25 nm was contained in a In0.85Al0.15Sb/InSb/In0.85Al0.15Sb heterostructure [1] grown by
molecular beam epitaxy on (001) GaAs substrates. The unpatterned heterostructure showed
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12 J. J. Heremans et al.

Figure 2. (a) Schematic representation of a closed path of a charge in magnetic field B, where the
accumulated Aharonov-Bohm phase equals π if the average radius equals the magnetic length lm.
The vector potential A is indicated on the circumference. (b) Schematic representation of a closed
path of a magnetic moment μ in electric field E, where the accumulated Aharonov-Casher phase
equals π if the average radius equals the electric length lE. The AC vector potential Aac is indicated
on the circumference.

at 0.39 K an areal carrier density 5.2 × 1015 m−2 with mobility 9.7 m2/Vs. Wires of length
L = 24 μm were fabricated on this heterostructure. Figure 1 shows data for Lso vs w for Bi
and InSb wires, obtained at T = 0.39 K [1,21]. The values for Lso were extracted using the
method described below. Of importance in this work, Lso shows an approximate dependence
Lso ∼ 1/w (fitted lines in Fig. 1) which will be discussed below.

The characteristic path length for accumulation of a quantum phase plays an important
role in limiting the length over which a wave packet retains coherence. Experimental
situations do not distinguish between dephasing due to effective or actual gauge fields, in
principle a reversible process, and decoherence due to interactions with the environment,
which is not reversible. The Q1D model of AL, described below, illustrates how the effects
of an accumulated quantum AB phase (effect of B on charge e) or an accumulated quantum
AC phase [11–14] under SOI (effect of electric field E on magnetic moment μ), add to the
intrinsic decoherence phenomena described by Lφ , to limit the effective phase coherence
length. We will call this effective phase coherence length Leff.

In a system of length L and width w at B = 0 and without SOI, the quantum correction
(per spin channel) to the 2-dimensional conductivity σ 2D = (L/w)G depends on Leff as
follows [25,26]:

δσ2D = −1

2

e2

π�

Leff

w
(1)

The AB phase [10] �φAB accumulated over a closed path length,

�φAB = 1

�

∮
e A × dl (2)

leads to dephasing over the time-reversed closed trajectories leading to AL, a time-reversal
symmetry breaking effect. Here A is the magnetic vector potential associated with B, and
the line element dl is to be taken over the path. A closed path of average radius lm ≡ (�/eB)1/2

encloses a magnetic flux π (�/e) and a particle with charge e over such path will accumulate
a quantum phase of π . A schematic geometric construction of such closed path is illustrated
in Fig. 2a. The magnetic length lm is thus a characteristic length for AB dephasing. In the
presence of perpendicular B, and if lm < w, the phase coherence length Lφ can be seen to
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Magnetoelectric Mapping as Observed in Quantum Coherence Phenomena 13

be reduced to Leff = (Lφ
−2+ lm−2)−1/2 , and the B-dependence of the quantum correction

δσ 2D(B) is carried by lm. If we now introduce SOI, Lφ is further replaced in Eq. 1 by singlet
and triplet lengths [1,8,9,19,21,25,27,28] originating in pairing of the two time-reversed
trajectories (Cooperons). The singlet length L0,0 is unaffected by SOI [1,8,21,28] and hence
L0,0 = (Lφ

−2+ lm−2)−1/2 , while the triplet lengths are L1,±1 = (Lφ
−2+ Lso

−2+ lm−2)−1/2

and L1,0 = (Lφ
−2+ 2Lso

−2+ lm−2)−1/2 . In Eq. 1, we then have Leff = (L1,1 + L1,-1 + L1,0

− L0,0). Using (w/L) δσ 2D(B) = δG(B), where δG(B) = G(B) − G0 and where G0 is the
classical conductance at B = 0, and using �R/R2 ≈ − �G = −(G(B) − G(B = 0)) = −
(δG(B) − δG(B = 0)), the experimental data can be fitted to Eq.1 to obtain Lso and Lφ . For
a proper fit to wires of finite L and to take into account ballistic effects, some corrections
[1,8,21,29,30] have to be applied to Leff but these corrections don’t alter the discussion
below centered on the observation that Lso increases with narrowing w (Fig. 1).

The increase of Lso in narrow wires (Fig. 1) can be understood via the use of an
effective SOI vector potential, in analogy to the magnetic case. Linear Rashba-type SOI
[31] resulting from a unidirectional breaking of spatial inversion symmetry can be mapped
on the physics arising from an effective vector potential [32], namely Aac = (1/c∗2)(μ ×
E), with μ the particle’s magnetic moment, E the (uniform) effective or actual electric field
breaking inversion symmetry and thereby resulting in SOI, and c∗ the effective velocity of
light (a bandstructure parameter, as in Ref. 33). We call Aac the Aharonov-Casher vector
potential, and it gives rise to an AC phase [11-13] �φAC, analogously to the magnetic A
giving rise to the AB phase (Eq. 2):

�φAC = 1

�

∮
1

c∗2
(μ × E) · dl (3)

The AB and AC phase are magnetoelectric duals, with the AB phase describing the
effect of B on charge e and the AC phase describing the effect of E on magnetic moment
μ. In analogy to Fig. 2a, Fig. 2b shows a closed path geometry where the uniform E
is perpendicular to the path as expected for heterostructures or Bi thin films, and μ is
perpendicular to both E and the path elements (the alignment for the lowest energy state).
In Fig. 2b, a closed path of average radius lE ≡ �c∗2/(2Eμ) circumscribes π (�/μ) and a
particle with magnetic moment μ over such path will accumulate a quantum phase of π .
The electric length lE is thus a characteristic length for AC dephasing, fulfilling a role
dual to lm. Insight in the nature of lE can be obtained by using the mapping to linear
Rashba SOI. For particles of spin 1/2, we have μ = 1/2 μB with μB the Bohr magneton.
Then the Hamiltonian containing Aac maps on the Hamiltonian for linear Rashba SOI [32]
with Rashba parameter α = E �

2 e/(4m
∗2 c

∗2), where m∗ is the effective mass at the band
edge. The zero-B energy splitting under linear Rashba SOI [31] is �� = 2kFα (with kF

the Fermi wavevector), defining the spin precession frequency � due to SOI. The spin
precession length is then determined as L� = vF/� with vF the Fermi velocity, and for
a parabolic dispersion [9,34] we obtain L� = �

2/(2 m∗α). Under the D’yakanov-Perel’
(DP) motional narrowing spin decoherence mechanism assuming linear Rashba SOI (or
linear Dresselhaus SOI) [3,9,20,34], the spin decoherence rate 1/τ so = �2 τ e/2 , with τ e

the momentum relaxation time such that le = vFτ e. With the two-dimensional diffusion
coefficient D = vF

2τ e/2, we obtain Lso = (Dτ so)1/2 = L�. Using the expression for α, we
further find lE ≡ �c∗2/(2Eμ) = �

2/(2 m∗α) = L� = Lso. Hence, under DP spin decoherence
and linear Rashba SOI, the electric length lE yielding an AC phase of π over a closed loop,
equals the spin coherence length Lso. This equality quantitatively confirms the dephasing
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14 J. J. Heremans et al.

Figure 3. (a) Schematic representation of the geometrical constraint on magnetic flux accumulation
and hence Aharonov-Bohm phase accumulation in a wire of width w < lm. The effective magnetic
length has to stretch to lm

∗. (b) Schematic representation of the geometrical constraint on line-integral
(Eq. 3) accumulation and hence Aharonov-Casher phase accumulation in a wire of width w < lE. The
effective electric length has to stretch to lE

∗.

influence of Aac in analogy to the magnetic A and establishes the magnetoelectric duality
between the coherence-limiting roles of lm and lE.

Figure 3a illustrates that if in a two-dimensional system the closed path accumulating
an AB phase (Eq. 2) is constrained in a narrow wire to w < lm along one direction, then
acquiring the same AB phase will require the particle traveling over distance lm∗ ≈ π lm2/w
in the orthogonal direction to enclose the same area. The proportionality of the AB phase
to the area enclosed by the path (and enclosed magnetic flux) is a consequence of Stokes’
theorem and the fact that B = ∇ × A (related to gauge invariance). The length lm∗ becomes
the effective free length for dephasing. From this geometrical interpretation, we expect lm∗

∼ lm2/w in narrow wires. A more detailed calculation [25,29] considering the modification
due to boundary conditions of the Landau basis for wave functions constrained to a wire
finds that lm∗ = 31/2 lm2/w , consistent with the geometrical approach. Since lm∗ > lm , a
narrow wire will delay AB dephasing to higher B, or effectively lower the influence of B in
Leff. This effect is indeed observed in AL experiments [1,8].

The observation that Lso increases for narrowing w (Fig. 1) can now be understood
via the duality between the roles of lm and lE and via lE = Lso. Figure 3b illustrates that
if a closed path, now accumulating an AC phase (Eq. 3), is constrained in a narrow wire
to w < lE, then acquiring the same AC phase will require that the particle travel over
distance lE∗ along the wire, such that 2π lE = 2w + 2lE∗ to circumscribe the same path
length. A proportionality to enclosed area or to a flux via Stokes’ theorem can indeed
not be achieved for the AC phase for uniform E. We expect Lso = lE∗ ≈ π lE −w. Thus,
the geometrical interpretation of accumulated AC phase predicts that Lso increases for
narrowing w, as observed experimentally. But Lso ∼ 1/w [9] is not strictly recovered, since
the AC phase is acquired over a path length rather than over an area like the AB phase.
The experimental data for Lso vs w presented in Fig. 1 and in other literature [3-8] is at
present not sufficiently precise to determine whether Lso ∼ 1/w is in fact strictly followed,
and the data is hence judged compatible with the geometrical interpretation of accumulated
AC phase. Future experiments will be aimed at verifying whether an algebraic dependence
Lso ≈ π lE −w forms a better fit to the data, and at verifying the prefactors. Both the data
and the geometrical model however agree that in a narrow wire AC dephasing and hence
equivalently spin decoherence due to SOI will be suppressed, a finding of scientific and
technological value.

In conclusion, low-temperature spin coherence lengths in mesoscopic wires of the
strongly spin-orbit coupled materials InSb and Bi were obtained by antilocalization mea-
surements. It is observed that the spin coherence lengths increase as the wire widths
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Magnetoelectric Mapping as Observed in Quantum Coherence Phenomena 15

decrease, consistent with the literature. The suppression of spin decoherence is validated
by use of the magnetoelectric duality between the Aharonov-Bohm and Aharonov-Casher
phases and by use of a geometrical approach to describe dephasing due to the accumulation
of Berry’s phases.
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