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Abstract
Quantum interference oscillations due to the Aharonov–Bohm phase were measured in a ring
interferometer array fabricated on a two-dimensional electron system in an InGaAs/InAlAs
heterostructure. Coexisting oscillations with magnetic flux periodicity h/e and h/2e were
observed and their amplitudes compared as function of applied magnetic field. The h/2e

oscillations originate in time-reversed trajectories with the ring interferometers operating in
Sagnac-type mode, while the h/e oscillations result from Mach–Zehnder operation. The h/2e

oscillations require time-reversal symmetry and hence can be used to quantify time-reversal
symmetry breaking, more particularly the fundamental mesoscopic dephasing length
associated with time-reversal symmetry breaking under applied magnetic field, an effective
magnetic length. The oscillation amplitudes were investigated over magnetic fields spanning
2.2 T, using Fourier transforms over short segments of 40 mT. As the magnetic field increased,
the h/2e oscillation amplitude decreased due to time-reversal symmetry breaking by the local
magnetic flux in the interferometer arms. A dephasing model for quantum-coherent arrays was
used to experimentally quantify effective magnetic lengths. The data was then compared with
analytical expressions for diffusive, ballistic and confined systems.

Keywords: Aharonov–Bohm effect, quantum coherent transport, InGaAs heterostructures,
time-reversal symmetry
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1. Introduction

Quantum dephasing in mesoscopic systems can be experimen-
tally studied via the Aharonov–Bohm (AB) oscillations in the
electrical conductance of an interferometer structure versus ap-
plied magnetic field B. AB oscillations arise from quantum
interference between partial waves on trajectories in spatially
separate interferometer arms when inserting a magnetic flux φ

between the two arms (for reviews, see [1–4]). When the spa-
tially separated trajectories enclose a magnetic flux quantum
h/e (where h = 2πh̄ with h̄ the Planck constant and e the elec-
tron charge), a relative AB phase of 2π is accumulated between

the partial waves [2], resulting in oscillations in transmittance
and conductance with periodicity h/e (figure 1(a)). The os-
cillations result from minimal coupling of the particle charge
to the magnetic vector potential and are evidence of the non-
local quantum nature of mesoscopic conductance phenomena.
The interferometric setup described above, yielding a period-
icity of h/e due to the AB phase, is a Mach–Zehnder (MZ)
interferometer and can be nanolithographically fabricated in
solid-state systems as an AB ring as depicted in figure 1(a).
In a single MZ interferometer the spatial asymmetry between
the two arms, originating in fabrication and materials imper-
fections, can give rise to an additional phase shift between two
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Figure 1. (a) Mach–Zehnder (MZ) interferometer, based on
trajectories in spatially separate arms. (b) Sagnac-type (ST)
interferometer, based on exact time-reversed trajectories (for clarity,
trajectories are shown spatially non-overlapping).

partial waves if each samples only one arm [4–6]. Hence if a fi-
nite number of MZ interferometers are concatenated, ensemble
averaging will diminish the measured conductance oscillation
amplitude [7–12]. Yet, trajectories through the interferome-
ter arms exist which are immune to such spatial asymmetry,
namely exact time-reversed trajectories which probe both in-
terferometers arms in a time-reversed scattering sequence (fig-
ure 1(b)). Via the AB phase the time-reversed trajectories give
rise to Altshuler–Aronov–Spivak (AAS) conductance oscilla-
tions and these survive ensemble averaging over a network of
interferometers [4, 7, 13–16]. Interference phenomena relying
on time-reversed trajectories are typical of Sagnac-type (ST)
interferometers (figure 1(b)). The AAS oscillations, induced
by the AB phase but relying on time-reversal symmetry, ap-
pear with a periodicity in φ of h/2e since they enclose the flux
twice. In the same mesoscopic ring geometries (figure 1), the
AB phase thus induces both MZ interferometric oscillations
relying on spatial symmetry and with periodicity h/e and ST
interferometric oscillations, which we for this work define as
relying on time-reversal symmetry and showing periodicity
h/2e (AAS oscillations). In large arrays of interferometers,
ensemble averaging and spatial asymmetry will lead to domi-
nance of the h/2e AAS oscillations over the MZ oscillations.
Yet AAS oscillations require time-reversal symmetry, broken
by B. If magnetic flux penetrates the interferometer arms
(which we will refer to as local φ), rather than only the space
between interferometer arms (non-local φ), then time-reversal
symmetry in the arms will be broken and the AAS oscillation
amplitude will decay [4, 8, 13, 16–18]. Typical experiments
are performed by applying a uniform B, resulting in both lo-
cal and non-local φ and hence an AAS amplitude diminishing
with |B| is observed. This decay of the AAS quantum interfer-
ence phenomenon is akin to the disappearance of the quantum
corrections of weak-localization and anti-localization with in-
creasing |B|. In contrast MZ oscillations relying on spatial
symmetry, nominally survive to high B. In MZ interference,
rather than a decay of the amplitude, a modulation of the am-
plitude approximately periodic in the local φ is observed [19].

At low temperatures T in solid-state systems, other
causes also contribute to reduction of oscillation amplitudes,
such as decoherence by fluctuations in the electromagnetic
background (Nyquist decoherence) [18, 20–22], by particle
leakage from the quantum system (dwell-time-limited

decoherence) [18, 23] and by energy smearing from excitation
exceeding the Thouless energy [19]. These mechanisms
lead to irreversible dephasing, referred to as decoherence [24]
and determine the phase coherence length Lφ , defined as
the distance electrons travel before their quantum phase
is randomized by inelastic scattering processes. The
characteristic length over which time-reversed partial waves
dephase in B due to the accumulated AB phase is a magnetic
length LB , which can be estimated from the quantum
interference effects of the AB phase. In an unconfined system,
a closed trajectory will accumulate a unity quantum phase
if the trajectory encloses a magnetic flux h̄/e. Defining the
area enclosed by the trajectory as L2

B , we find LB = lm ≡√
h̄/(eB). LB is the characteristic length for breaking of time-

reversal symmetry and enters in expressions of decoherence
analogously to Lφ . The corresponding decoherence and
dephasing rates (inverse times) can be added according to
Matthiessen’s rule [17, 25, 26]. In a diffusive approach, Lφ

and LB are related to the phase coherence time τφ and magnetic
dephasing time τB respectively by Lφ,B = √

Dτφ,B , where D

is the diffusion coefficient. The effective coherence length LC

combining both effects hence is obtained as

LC = (
L−2

φ + L−2
B

)− 1
2 (1)

The expression LB = √
h̄/(eB) only applies to unconfined

systems and equation (1) supposes diffusive transport.
Expressions for LB have been derived extending the range
of applicability to confined [25] and ballistic [27, 28]
systems, as explained below. Yet, hitherto the expressions
have not been put to a direct comparative experimental
test. The work below demonstrates the applicability of
the expressions for LB to quantum transport at low T by
using an array of mesoscopic interferometers in ST mode,
sensitive to time-reversal symmetry breaking. The array is
fabricated on a high-mobility InGaAs/InAlAs heterostructure
and magnetotransport through the array is measured at fixed
T = 0.4 K, revealing AAS oscillations. A strong correlation
between the Fourier amplitude of the AAS oscillations and
a length LB is observed. By fitting the Fourier amplitude
of AAS oscillations, we experimentally derive values for the
mesoscopic time-reversal symmetry breaking length LB as
function of B. The work further shows that MZ interference
due to the AB phase, also observed in the interferometer array,
is insensitive to time-reversal symmetry breaking. Due to spin–
orbit interaction in the InGaAs/InAlAs heterostructure, a weak
anti-localization (WAL) [14, 22, 26, 29, 30] background in the
magnetotransport is also observed, further discussed below.

2. Experiments

The device consists of a 5 × 5 AB ring array, fabricated on an
In0.64Ga0.36As/In0.45Al0.55As heterostructure using electron-
beam lithography and inductively coupled plasma reactive ion
etching (ICP-RIE). Figure 2(a) shows a scanning electron
micrograph of the ring array, with 5 parallel necklaces each
of 5 series-connected rings. The classical resistance of the
array is thus equivalent to one ring. The heterostructure
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Figure 2. (a) Micrograph of a representative 5 × 5 ring array. Each
ring has average radius 650 nm and lithographic arm width 300 nm.
The separation between columns is 2.2 µm. (b) Schematic
four-terminal measurement setup.

contains a two-dimensional electron system (2DES) in a 10 nm
wide In0.64Ga0.36As quantum well located 50 nm beneath the
surface. The 2DES has areal density NS = 1.1 × 1012 cm−2

calculated from Hall coefficient, yielding a Fermi wavelength
λF = 24 nm, has resistivity ρ2D = 121 �/� at 0.4 K and
mobility µ = 4.7 × 104 cm2 (Vs)−1. The 2DES state was
modified by illuminating with an LED at low T , increasing
NS while lowering µ. While the transport properties vary
between cooldowns, for the present experiments the resistance
R of ring array is 3400 �, within 5% variability. The
lithographic width of each ring arm is 300 nm and the rings
have average radius r = 650 nm (the central antidot has
radius 500 nm). Due to a depletion layer, the effective
conducting width w of each arm will be smaller than 300 nm.
The conducting width w can be estimated at w � 100 nm
from R and the resistance of structures peripheral to the
array. The number of transport channels due to transverse
quantization can be estimated as 2w/λF ≈ 8. The separate
transport channels are expected to maintain the same phase
for AAS oscillations, since their average locations in the
interferometer arms coincide and since channel-dependent
scattering phenomena leading to spatial asymmetry in the rings
do not affect AAS oscillations which rely on time-reversal
symmetry. Hence the AAS oscillation intensity, of interest
in this work, is not expected to be sensitive to the number of
transport channels. The mobility mean free path, limited by
elastic momentum scattering processes, is defined as le = vFτe,
where vF is the Fermi velocity, τe = µm∗e−1 is the momentum
relaxation time derived from µ and m∗ represents the electron
effective mass (0.035 me at the �-point in our system, with
me the free-electron mass). Accounting for non-parabolicity
of the conduction band, the 2DES has le = 1.54 µm. Each
ring thus operates in or near the ballistic regime, since le

Figure 3. R(B) versus B measured on the array at T = 0.4 K over
two spans of 0.2 T. AAS and MZ oscillations ride on a
magnetoresistance background dominated by WAL at low B. Panel
(a) focuses on the region −0.1 T < B < 0.1 T, while panel (b) shifts
to 0 < B < 0.2 T to emphasize the visibility of MZ oscillations.

approximately equals the MZ path length πr = 2.0 µm and
ballistic, rather than diffusive, expressions are appropriate to
describe the mesoscopic transport phenomena. From previous
measurements in this heterostructure [19], it is estimated that
Lφ = 3.0 µm at T = 0.4 K.

Magnetotransport through the ring array was measured
using standard four-terminal low frequency lock-in techniques
(figure 2(b)) at T = 0.4 K under applied current of 20 nA
and recorded as R(B). B was applied normal to the plane
of 2DES, varying from −2.3 T to 2.3 T in small step sizes
to capture the AAS and MZ oscillations in R(B). Data is
depicted in figure 3, as R(B) versus B. At uniformly applied
B, the flux threading the ring is φ(B) = Bπr2, allowing a
prediction from lithographic sizes of the periodicity of R(B)

in B. The MZ oscillations (periodicity in non-local φ of h/e)
have expected periodicity �BMZ in B of 3.1 mT and the AAS
oscillations (periodicity in non-local φ of h/2e) have expected
ST periodicity �BST of 1.56 mT.

3. Results and analysis

As shown in figure 3(a), the array yields a strong WAL
positive magnetoresistance background, on which interference
oscillations ride. Both figures 3(a) and (b) span 0.2 T, with
figure 3(a) emphasizing the region B ∼ 0 and figure 3(b)
extending the same data to 0.2 T. In figures 3(a) and (b)
strong oscillation signals are observed, as a superposition of
AAS (h/2e) oscillations at low B < 5 mT riding on the
strong WAL background and MZ (h/e) oscillations prominent
for B > 20 mT. Fourier spectra (below) will bear out this
identification. The WAL [14, 22, 26, 29, 30] background
extends to B ≈ 15 mT. In the array, WAL is observed
to yield a stronger positive magnetoresistance signal than
in unconfined macroscopic regions of the same 2DES. The
increased magnitude of the WAL magnetoresistance results
from the confined geometry, as geometrical factors such as
the conducting width of wire-like structures play a role in
the magnitude and extent in B of WAL features [15, 31].
For the discussion below, we remove the magnetoresistance
background to enhance the visibility of the low-B AAS
oscillations. As further examples, figure 4 shows R(B) at
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Figure 4. R(B) versus B over two spans of 50 mT, centered on
0.865 T (a) and 1.825 T (b). Only MZ oscillations (periodicity h/e)
are visible at these higher B.

Figure 5. (a) R(B) versus B at low B spanning ±20 mT; (b) After
removing the WAL magnetoresistance background from (a), AAS
and MZ oscillations clearly appear. (c) Fourier transform of the data
in (a) with two maxima clearly marked out: the h/e maximum
corresponding to MZ oscillations and the h/2e maximum
corresponding to AAS oscillations.

higher B in spans of 50 mT, centered on 0.865 T and 1.825 T
respectively. The average periodicity of the oscillations
in figure 4 is 2.8 mT, demonstrating that the oscillations
have periodicity in non-local φ of h/e and result from MZ
interference. The experimental �BMZ = 2.8 mT indeed
differs by only 10% from the geometrically expected 3.1 mT.
No component in h/2e appears in such higher B spans and ST
operation is indeed expected to be suppressed at higher B due
to breaking of time-reversal symmetry.

Figure 5(a) focuses on R(B) versus B at low B,
spanning ±20 mT. Upon removal of the WAL background
in figure 5(b), AAS oscillations clearly appear for B <

5 mT. The Fourier spectrum corresponding to figure 5(b) is
contained in figure 5(c). In the spectrum, the MZ oscillations

produce a maximum at 1/B = 360 T−1, corresponding to
periodicity �BMZ = 2.77 mT and the AAS ST oscillations
produce a maximum at 1/B = 750 T−1, corresponding to
periodicity �BST = 1.33 mT. The Fourier transform confirms
that �BST ≈ 1

2�BMZ and yields values close to geometrical
expectations, hence corroborating the existence of MZ h/e and
ST h/2e oscillations in the range ±20 mT.

Figure 6 depicts Fourier spectra illustrating the decay
of AAS oscillations with increasing B, caused by time-
reversal symmetry breaking and quantitatively described by
the shortening of LB with increasing B in equation (1). The
Fourier spectra are all obtained over a span of 40 mT, so as to
contain a sufficient number of oscillations. Figure 6(a) uses
data centered at B = 0 spanning −20 mT to 20 mT, (b) 20 mT
to 60 mT, (c) 60 mT to 100 mT, (d) 100 mT to 140 mT and
(e) 140 mT to 180 mT, at which B the AAS oscillations have
decayed. It is noticeable that whereas the AAS oscillation
amplitude decays with increasing center B, the MZ oscillations
maintain approximately constant amplitude. Figures 4(a) and
(b) also demonstrate that MZ oscillations survive essentially
unaffected at higher B. Figure 7(a) depicts the AAS (h/2e)
Fourier amplitude versus B as obtained from figure 6. The
ordinate contains the height of the h/2e Fourier component,
while the abscissa corresponds to the center value of |B| of
the Fourier transform spans. The first datapoint thus lies
at B = 10 mT and subsequent datapoints at 40 mT, 80 mT,
120 mT and 160 mT. Figure 7(a) clearly shows the decay of
the AAS oscillation amplitude with increasing B. We note
that oscillations periodic in h/2e can in principle also occur as
higher harmonics of MZ oscillations [19]. However, in ring
arrays such MZ contribution will be small due to ensemble
averaging. The observed decay with increasing B of the
h/2e component also strongly favors its identification as an
AAS ST contribution. Using the same method, figure 7(b)
depicts the height of the MZ (h/e) Fourier component versus
B over a wider range of B, demonstrating that although
the MZ oscillation amplitude varies due to local φ [19], no
monotonic decay with increasing B is apparent. The differing
behavior of the AAS and MZ oscillations originate in the
different symmetries, respectively temporal and spatial, they
are sensitive to.

The magnetic dephasing length LB(B) assumes different
forms depending on the relative values of lm ≡ √

h̄/(eB),
le and w. As mentioned, in an unconfined system without
impediment to flux accumulation over a closed path and where
necessarily lm � w and le � w, we have the unconfined
diffusive expression for LB(B)

LB = lm (2)

Still in the diffusive regime (le < w) and with diffusive
boundary scattering, yet in a narrow wire and at low B with
lm > w, such that boundary conditions at the wire edges
modify the Landau level states, we have [25]

LB =
√

3lm
2/w (3)

In the diffusive regime but where lm � w, a crossover
expression [32] can be applied,

LB =
√

lm
2 + 3lm

4/w2 (4)
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Figure 6. Fourier spectra illustrating the decay of AAS (h/2e) oscillations and the survival of MZ (h/e) oscillations with increasing B.
Fourier spectra use a 40 mT span, centered at 0 mT (a), 40 mT (b), 80 mT (c), 120 mT (d) and 160 mT (e).

Figure 7. Fourier component amplitudes (arbitrary units) versus B (B-values determined as explained in the text). (a) AAS (h/2e) Fourier
component versus B, illustrating the decay of AAS oscillations with increasing B. (b) MZ (h/e) Fourier component versus B, illustrating
the lack of monotonic decay of MZ oscillations with increasing B.

In the ballistic regime where le � w and at low B limited by
lm >

√
wle, we have an expression taking flux cancellation

into account [27, 28]

LB = lm

√
C1l2

mle/w3 (5)

Still in the ballistic regime (le � w) and at intermediate B such
that w < lm <

√
wle, we have a crossover expression [27, 28]

LB = lm

√
C1l2

mle/w3 + C2l2
e /w

2 (6)

C1 and C2 are numerical constants with values depending
on whether the boundary scattering at wire edges is specular
or diffusive. Specular boundary scattering is expected
in wires fabricated from the In0.64Ga0.36As/In0.45Al0.55As
heterostructure due to the presence of a depletion layer at the
wire edge (for an example of diffusive boundary scattering, see
[22]). For specular boundary scattering in a 2DES, C1 = 4.75
and C2 = 2.4 [28]. The ring array, with w � 100 nm and
le = 1.54 µm, should satisfy the ballistic condition.

With knowledge of LB(B) and Lφ , equation (1) provides
the effective coherence length LC(B). In order to determine
which model (equations (2)–(6)) fits the experimental data best,
we have to introduce a method to map the AAS oscillation
amplitude to the coherence length LC. For a quantum-
coherent interferometer array, an expression more complex
than an exponential decay with characteristic length LC is
appropriate [14]. From [15] we have isolated the oscillatory
part of the resistance due quantum interference effects in
transport through interferometer arrays and we find that the
amplitude A of the AAS oscillations can be expressed as

A = α(LC/L)(1 − tanh(L/LC)) (7)

where α is a prefactor and L = πr . At low B, we can assume
LB � Lφ , such that LC ≈ Lφ = 3 µm. We thus use the
datapoint at the lowest B = 10 mT in figure 7(a) to calibrate
α using LC = 3 µm in equation (7). For the remaining 4 field
points, the value of LC(B) can then be obtained and hence the
value of LB(B) experimentally determined using equation (1).
The results are depicted in figure 8 as experimental data (the
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Figure 8. Experimental data for LB (black squares) and calculated
curves for LB according to (bottom to top curves) equations (2)–(6)
(curves for equations (3) and (4) mostly overlap for the present
parameters and cannot be distinguished on the graph).
The experimental data are extracted using figure 7(a) as explained in
the text.

calibration point at B = 10 mT lies off the graph since for
this datapoint LB is assumed very long; a guideline was used
to connect this point to the remaining data). Figure 8 also
plots values of LB calculated from equations (2)–(6). The
model described by equation (6) provides the best match to the
experimental values of LB .

The result that the experimental data for LB(B) follows
equation (6) is reasonable. The system is confined to a wire
of width w and is in ballistic regime, with le > w. Hence
equations (2)–(4) are not expected to be suitable and the data
indeed bears out this observation. The condition lm >

√
wle

for equation (5) implies that B < 3.8 mT. In figure 8, B

exceeds 3.8 mT and hence equation (5) is not expected to fit
the data except at the lowest B where no independent data is
available. Using the condition w < lm <

√
wle, we obtain

3.8 mT < B < 66 mT. The condition implies that equation (6)
is expected to match the data in this range of B. The experiment
bears out that in fact equation (6) provides a good description
of LB(B) not only in this range, but beyond B = 66 mT. We
also note that at the higher B, C1 can be set to 0. However,
since our data was obtained from −20 mT to 180 mT, a range
that includes low B, the full crossover expression given by
equation (6) provides a prediction for LB(B) valid over a wide
range of B in our ballistic system.

A single ring in the array has a circumference ≈4 µm.
We can thus expect that when LB is smaller than this value,
the AAS oscillation amplitude should decrease significantly.
The data in figure 8 is consistent with this expectation,
as the Fourier transform height of the AAS oscillations
almost merges into the background for LB � 3 µm. We
note that an increase in AAS oscillation amplitude can be
achieved by excluding the local φ from the interferometer
arms, although an experimental realization of this approach
will prove challenging. Alternatively, narrowing w will
yield a more practical avenue to increase the AAS oscillation
amplitude, as in equations (3)–(6) LB will lengthen with
narrowing w. Insight in this relation follows from considering

that if a closed path is constrained to w along a transverse
direction in a wire, acquiring a given AB phase will require
that the partial wave travel over ∼l2

m/w in the longitudinal
direction, which becomes the effective free length for AB phase
accumulation, or hence the effective magnetic length and time-
reversal symmetry breaking length. The lengthening of LB

with narrowing w hence has a geometrical origin, in a delay
of accumulated local φ to higher B. The MZ oscillations are
not similarly affected by the local φ, as the MZ interference
does not rely on time-reversal symmetry and hence remains
unaffected by LB .

4. Conclusions

The mesoscopic dephasing length scale describing time-
reversal symmetry breaking due to local magnetic flux was
measured using a ballistic interferometer array, fabricated
on a two-dimensional electron system in an InGaAs/InAlAs
heterostructure. The interferometer array showed both
Mach–Zehnder operation, yielding a magnetoresistance with
flux periodicity of h/e and Sagnac-type operation based
on time-reversed paths, yielding a periodicity of h/2e

(Altshuler–Aronov–Spivak oscillations). Fourier transforms
over short magnetic field segments were used to quantify
the oscillation amplitudes, confirming that the Mach–
Zehnder mode of operation is unaffected by time-reversal
symmetry breaking under an applied magnetic field, whereas
Sagnac-type operation is erased by time-reversal symmetry
breaking. Amplitudes were compared to predictions for
h/2e oscillations in quantum-coherent interferometer arrays,
allowing experimental determination of the dephasing lengths
associated with time-reversal symmetry breaking, equivalent
to effective magnetic lengths. An analytical expression for
effective magnetic lengths in confined ballistic systems yielded
the best fit to experimental values.
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