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We present measurements of the magnetoconductance of quasi-one-dimensional wires fabricated on a two-
dimensional electron system in an InSb/InAlSb heterostructure. The width and temperature dependence of the
spin and phase coherence lengths in the narrow wires are examined by analyzing the magnetoconductance in
antilocalization theory, modified to account for ballistic transport. The experiments indicate that the confined
geometry can enhance spin coherence lengths in systems not in the motional narrowing regime and in the
presence of strong cubic Dresselhaus spin-orbit interaction. Experimentally, the spin coherence lengths are
found to be inversely proportional to wire width and to display a weak temperature dependence. For all wire
widths the phase coherence length, after correction for finite length effects, shows a temperature dependence
indicative of phase decoherence via the one-dimensional Nyquist mechanism.
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I. INTRODUCTION

Recent theoretical studies1–5 have predicted a suppression
of spin-relaxation rates in narrow semiconducting channels
fabricated from two-dimensional electron systems �2DESs�.
These predictions are supported by experiments performed
on narrow wires fabricated from InGaAs �Ref. 6–8� and
AlGaN/GaN 2DESs,9 which have observed increasing spin
coherence times �S as a function of reduced wire width w.
For systems in the motional narrowing regime—for which a
spin precesses only over a small angle between momentum
scattering events—the spin coherence length LS is expected
to be inversely proportional to w.3–5 Here we investigate the
w dependence of LS in quasi-one-dimensional �Q1D� wires,
where w is shorter than the mean-free path le. The wires were
fabricated on an InSb 2DES contained in an InSb/InAlSb
heterostructure. The strong spin-orbit interactions �SOIs� and
the high electron mobility in the InSb quantum well allow us
to examine the dependence of LS on w in a system that is not
in the motional narrowing regime and where w� le.

We present measurements of magnetotransport at low
magnetic fields in Q1D InSb wires. The dependence on
temperature T and on w of LS and of the phase coherence
length L� are investigated by analyzing the wires’ low-field
magnetoconductance with low-dimensional antilocalization
theory. Antilocalization theory describes deviations from the
classically predicted conductance G0 as a consequence of
interference between itinerant electrons on time-reversed
trajectories.5,10–23 The magnitude of the antilocalization cor-
rections depend on LS, on L�, and on the applied magnetic
field B. Thus quantitative information about both LS and L�

can be obtained from magnetotransport measurements.5,10–23

Extensive experimental and theoretical research on anti-
localization phenomena in thin films of metals11–13 and
semiconductors,23–25 in 2DESs,14–20,26–32 in hole systems,22,33

and in narrow wires7–9,34–36 demonstrate that these measure-
ments form a valuable experimental tool for investigating
spin and phase coherence in various material systems.

II. EXPERIMENT

Using lithographic techniques, Q1D wires of length L
=24 �m with nominal lithographic design widths, wlitho, be-
tween 0.475–0.875 �m were fabricated from an InSb/
InAlSb n-type heterostructure grown by molecular-beam ep-
itaxy on a GaAs �001� substrate. The 25 nm wide InSb
quantum well, situated 163 nm below the surface of the het-
erostructure, is separated from Si �-doped layers on either
side by 40-nm-thick In0.85Al0.15Sb barrier layers. An addi-
tional Si �-doped layer is located 23 nm below the surface
and balances surface states.37 The wires are oriented along

the �11̄0� direction, as ascertained from the anisotropic pro-
files of a lactic/hydrofluoric/peroxide acid etch test. Data
from four different wire sets �all fabricated on the same chip�
are presented and discussed in this paper. Each set contains
ten parallel wires of identical dimensions. The difference be-
tween sets of wires resides in the wire width. The data pre-
sented in this paper have been appropriately scaled and are
presented in terms of conductance G per wire.

Magnetotransport across the wire sets was measured us-
ing standard low-frequency lock-in techniques for 0.4 K
�T�15 K. In addition, four terminal resistivity and Hall-
effect measurements were performed on an unpatterned re-
gion of the 2DES at each T. The unpatterned region shows a
carrier density n2D�5.2�1015 m−2 and a mobility �2D
�9.7 m2 /V s at 0.4 K. Antilocalization measurements per-
formed on the unpatterned 2DES �Ref. 37� indicate that SOI
in this material can be attributed to a combination of the
Rashba38,39 and cubic Dresselhaus terms.39,40 The linear
Dresselhaus term has little effect in this particular hetero-
structure, as it is largely canceled by a portion of the cubic
Dresselhaus term.37 The strength of the SOI in this 2DES is
characterized by a Rashba parameter ����0.03 eV Å and a
Dresselhaus parameter ��490 eV Å3.37 Using these values,
we calculate the average SOI induced spin precession fre-
quency in the 2DES as 	�2.5�1012 s−1. The spin preces-
sion length is calculated using the Fermi velocity vF�8.85

PHYSICAL REVIEW B 81, 035335 �2010�

1098-0121/2010/81�3�/035335�7� ©2010 The American Physical Society035335-1

http://dx.doi.org/10.1103/PhysRevB.81.035335


�105 m /s, as L	=vF /	�0.35 �m taking into account
both the Rashba and Dresselhaus SOI. Hence, L	
 le
=vF�p�3.3 �m, where �p�3.7 ps represents the momen-
tum scattering time derived from �2D at T=0.4 K.

III. CHARACTERIZATION OF TRANSPORT PROPERTIES

In narrow wires, the carrier concentration n and mobility
� may differ from n2D and �2D in the parent 2DES.36,41,42 In
the InSb wire sets, however, measurements of Shubnikov-De
Haas oscillations at 0.4 K indicate no systematic change in n
as a function of w. The measurements show that within �5%
for all wires, n=n2D, and hence for all wires we use n=n2D
as determined at each T via Hall measurements on the un-
patterned 2DES.

Two further effects enter in the determination of the
wires’ conductance. First, a series resistance due to the un-
patterned entry and exit 2DES regions at both ends of the
wires �Fig. 1� must be estimated and subtracted from the
four-terminal wire resistance measurement. This effective se-
ries contact resistance Rc originates from the resistive volt-
age drop across the wide areas on either side of the wire sets.
The area has a width d1=15 �m. The distance d2 between
the end of the wires and the center of the voltage probes is
d2�7.5 �m and hence d2 /d1�0.5. Taking into account
twice a half-square sheet resistance leads to the estimate Rc
��2D, where �2D= �1 /n2De�2D� represents the resistivity of
the parent 2DES. Second, the conducting width w can differ
from the lithographic wlitho through edge depletion of carriers
and processing effects encountered during the fabrication. By
subtracting the depletion width wdep from wlitho, w can be
determined as w=wlitho−wdep. In order to determine w, we
examined the measured zero-field resistance R�0� �corrected
for Rc� across the different wire sets at T�34 K where
phase-coherent effects, such as antilocalization, are minimal.
Figure 1 displays R�0� as a function of wlitho. If n and � are
unaffected by the reduced dimensions, R�0� should be in-
versely proportional to wire width according to the simple

relation R�0�−Rc= �L�2D /w�. However, diffusive boundary
scattering from the wire’s side walls can affect the diffusion
constant D in narrow wires41 and lead to a correction to
R�0�−Rc. For purely specular boundary scattering, D is un-
changed from the two-dimensional expression, D=Ds

= 1
2vFle. For purely diffusive boundary scattering however,41

Dd=Ds�1−
4le

�w	0
1x
1−x2�1−exp�−w /xle��dx�. According to a

model that accounts for both specular and diffusive boundary
scattering, R�0�−Rc as a function of w can be expressed as43

R�0� − Rc =
L�2D

Npw
�p +

Ds

Dd
�1 − p� , �1�

where p represents the probability for purely specular bound-
ary scattering and Np=10 the number of parallel wires. Equa-
tion �1� reduces to the limiting expressions41,43 for either
purely specular �p=1� or purely diffusive �p=0� boundary
scattering. Since �2D and le are determined by measurements
on the unpatterned portion of the sample and L follows from
the wire dimensions, only p and w form adjustable param-
eters in Eq. �1�. Using a least-squares fit of Eq. �1� to the
experimentally determined values of R�0� at T�34 K, we
find the data are best explained by purely specular boundary
scattering with an average depletion width wdep=0.32 �m in
the wires, Fig. 1. And, D equals Ds and can be assumed equal
to its value measured in the unpatterned 2DES. Purely specu-
lar boundary scattering is consistent with a large wdep, as the
carriers are isolated from the roughness of the wire edges. It
should be emphasized, however, that wdep may not be en-
tirely electrical in nature, as wdep also includes effects from
the fabrication process.

IV. CONDUCTANCE IN APPLIED B

Some examples of the low-field magnetoconductance
G�G�B�−G�B=0� obtained at different T are depicted in
Fig. 2. From the measurement geometry �Fig. 1� G�B� for
T�15 K has been calculated from measured values of R�B�
assuming Rc=125 	, consistent with �2D�T�15 K�. In or-
der to account for slight but inevitable Hall-effect contribu-
tions to the data, the component antisymmetric in B has been
subtracted from the data by averaging G�+B� and G�−B� for
each data set and hence G is plotted in terms of the mag-
nitude of the applied field, �B�. Antilocalization is observed in
all the wire sets as evidenced by the negative magnetocon-
ductance around B=0, crossing over to positive magnetocon-
ductance at a higher B=Bcr. In 2DESs, the magnitude of the
crossover field Bcr scales as LS

−2.11–13,15,17 In narrow wires,
however, G can be broadened since the one-dimensional
magnetic length LB is inversely related to w.5,41 A detailed
description of LB in diffusive and ballistic wires can be found
in Ref. 41. Briefly, phase coherence between time-reversed
electrons is destroyed when the flux enclosed by the time-
reversed trajectory ��h /e. In narrow wires, the area of
such trajectories can be characterized by wLB as motion in
the direction transverse to the wire axis is constrained by the
wire boundaries. Thus, phase coherence is lost for trajecto-
ries where �=BwLB=h /e, leading to LB�1 /w. In compari-
son to diffusive wires, the dependence of LB on w in ballistic

(a) (b)

FIG. 1. �Color online� Wire set resistance R�B=0�−Rc at T
=34 K as a function of lithographic design width. R�0� represents
the measured resistance across the wire set and Rc=114 	 the se-
ries contact resistance estimated from �2D�34 K�. A few compara-
tive curves calculated from Eq. �1� are depicted along with the data.
Right: schematic illustration of wire set geometry. From the ratio
d2 /d1�0.5 we estimate Rc��2D.
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wires can be even stronger due to the flux cancellation effect
which is a consequence of self-intersecting backscattered
time-reversed trajectories.36,41 Such trajectories can be visu-
alized as being comprised of smaller distinct loops which the
backscattered charge traverses in opposite directions.41 In an
applied field, the separate Aharonov-Bohm phases acquired
by the charge as it encircles each of the smaller loops largely
cancel since the sign of the phase depends on propagation
direction. Thus, under flux cancellation a larger B is required
to accumulate the same phase difference between such time-
reversed trajectories and leads to further broadening of the
G�B� traces as a function of w. Figure 3 depicts the broad-
ening of G with narrowing w explicitly. The factor of 4
increase in Bcr as w decreases is a consequence of the w
dependence of LB in the narrow wires and is not indicative of
a dramatic decrease in LS.

Figure 3 also shows a decrease in the magnitude of the
negative magnetoconductance for decreasing w. Negative
magnetoconductance at low �B� forms a characteristic feature
of antilocalization under SOI and the magnitude of the an-
tilocalization signal can be quantified as the observed
�G�Bcr��. For w=0.16 �m, �G�Bcr�� is a factor �6 smaller
than for w=0.56 �m. A suppression of antilocalization in
narrow wires has been previously observed in other
systems.7–9,35 In addition, the narrowest wires show the
strongest T dependence of the negative magnetoconductance
around B=0. Negative magnetoconductance is not observed
above 5 K in the narrowest wires but is still evident at 15 K

in the wider wires, according to Fig. 2. In 2DESs under SOI,
�G�Bcr�� increases with the ratio L� /LS. Thus the compara-
tive magnitude and the T dependence of the negative mag-
netoconductance, between the wide and narrow wires, indi-
cate a smaller ratio L� /LS in the narrower wires.

Analysis

Under antilocalization, the total correction to G is com-
posed of contributions from three triplet states and a singlet
state.5,15–21,23,44,45 The singlet contribution, which is sensitive
to L� but not LS, gives rise to negative magnetoconductance
around zero field.17 In contrast, the triplet contributions de-
pend on both L� and LS and are responsible for positive
magnetoconductance. In materials with strong SOI, the sin-
glet term dominates around B=0 and a negative magneto-
conductance is observed. With increasing B the triplet con-
tributions grow in relevance until they dominate and positive
magnetoconductance is observed.17 In Q1D systems, both
the triplet and singlet contributions can be related to effective
length scales21,44,45 and the B dependence of G is then de-
scribed by5,21,36,41,44,45

G�B� = G0 −
e2

hL� �
m=�1,0

L̃1,m − L̃0,0� , �2�

where L̃1m represent the individual triplet length scales, L̃00 is
the singlet length scale, and L is the length of the wire. From
Kettemann’s formulation of antilocalization, the triplet and
singlet length scales in wires fabricated from a 2DES are
given by5

L̃s,m = �L�
−2 + �s,mLS

−2 + LB
−2�−1/2 �3�

with �1,�1=0.5, �1,0=1, and �0,0=0. The B dependence of
G�B� is contained in the one-dimensional magnetic length
LB= lm


1+3lm
2 /w2, where lm=
� /eB represents the magnetic

length in two and three dimensions. This model is derived
for w�L	.5 However, experiments on InGaAs wires have
indicated that the model can also model G�B� in wires where
w�L	.8

Kettemann’s model was developed for diffusive wires
where le�w. However, le�w in the ballistic Q1D wires dis-

FIG. 2. �Color online� Change in conductance, G, as a func-
tion of the magnitude of the applied magnetic field, �B�, at various T
for four different wire widths w: �a� w=0.56 �m, �b� w
=0.36 �m, �c� w=0.26 �m, and �d� w=0.16 �m. Solid lines are
fits of the magnetoconductance traces to antilocalization theory.

FIG. 3. �Color online� G at 0.4 K, parametrized by the four
wire widths. The inset plots the crossover field Bcr, at which nega-
tive magnetoconductance crosses over to positive magnetoconduc-
tance, as a function of wire width.
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cussed here. Therefore, we implement the correction for bal-
listic wires first introduced by Beenakker41 in weak localiza-
tion theory. The triplet and singlet length scales in ballistic
Q1D wires then become41

L̃s,m = �L�
−2 + �s,mLS

−2 + LB
−2�−1/2

− �L�
−2 + �s,mLS

−2 + LB
−2 + 2le

−2�−1/2, �4�

where, again, we take �1,�1=0.5, �1,0=1, and �0,0=0.5 In
ballistic rather than diffusive Q1D wires, LB is described by41

LB = lm
C1lm
2 le

w3 +
C2le

2

w2 . �5�

The values of the numerical constants C1 and C2 depend on
whether the boundary scattering is specular or diffusive, with
C1=4.75�2�� and C2=2.4�1.5� for predominately specular
�diffusive� boundary scattering.41 Equation �5� accounts for
the flux cancellation effect in ballistic wires.41

In order to extract LS and L�, the magnetoconductance

curves were fit to Eq. �2� using Eq. �4� to describe L̃s,m. LB
was evaluated by Eq. �5�, using specular boundary scattering
values for C1 and C2. The resulting fits are depicted along
with the experimental data in Fig. 2. The extracted values for
LS and L� are presented below, and their dependence on w
and T discussed in detail.

We note that fitting the magnetoconductance data to
Kettemann’s model5 without implementing the two ballistic
modifications leads to substantially different LS and L�. By
separately examining the effect of each of the two modifica-
tions on the results, we find that the ballistic LB is primarily
responsible for the difference. Applying a ballistic LB in
wires where le�w is well established in the
literature34,36,41,43,46–48 and is thus appropriate for the study
of antilocalization in the Q1D InSb wires presented here, up
to widths w=0.56 �m.

V. RESULTS

A. Spin coherence length

Values for LS extracted from the ballistic model are found
to range between �3–5 �m, with LS increasing as w nar-
rows. The dependence of LS on w at 0.4 and 1.3 K is depicted
in Fig. 4. Since L	 has a constant value of 0.35 �m over the
range of the experiments, Fig. 4 shows that LS follows LS
�w−1. The dependence is valid up to T�5 K �above 5 K
antilocalization was not observed for w�0.26 �m�. Al-
though an increase in LS with decreasing w has been previ-
ously observed in narrow wires where Rashba SOI limits
LS,6–8 here we find the same behavior in the presence of
strong cubic Dresselhaus SOI, in ballistic InSb Q1D wires,
and where L	
 le.

We can estimate the enhancement of LS over its value LS
2D

in an unpatterned 2DES. Given the strong SOI in the system,
the LS observed in the wires are seemingly quite long. How-
ever, in systems with a long le, and where L	� le, one would
not expect spin decoherence to occur on a time scale much
shorter than �p.18 For 2DESs where L	� le, it is common to
estimate �S

2D��p, as a rapid spin precession frequency is

assumed to cause decoherence promptly after the first ran-
dom scattering event occurs.4,49,50 Unlike in the motional
narrowing regime, �S

2D��p suggests that decreased momen-
tum scattering leads to a longer LS

2D. At 0.4 K, the above
estimate predicts Ls

2D�
D�s
2D�
D�p�2.5 �m. Thus, for

the narrowest wires �w�0.16 �m� we find a factor of �2
enhancement in LS as compared to the estimated LS

2D.
From the data in Fig. 4, it follows that LS�2.4�L	

2 /w�.
The proportionality factor 2.4 holds, within experimental er-
ror, up to T�5 K. As has been observed previously,8 LS is
enhanced even in wires where w�L	. We are not aware of
theoretical predictions for enhanced LS in ballistic wires
which consider both Rashba and cubic Dresselhaus SOI.
However, accounting for the two different SOI contributions,
Kettemann5 predicts that the dimensional confinement in nar-
row diffusive wires leads to a dependence of LS on w as

1

LS
2 �w� =

1

L�
2 +

w2

12L	
2 LR

2 �6�

with LR=vF /	R and L�=vF /	�, where 	R=2���kp /� and

	�=�kp
3 /2� with kp=
2�n the wave vector in the 2DES

plane. 	R and 	� represent the respective spin precession
frequencies associated with the Rashba and cubic Dressel-
haus SOI in the parent 2DES �the linear Dresselhaus term
has little effect in this particular InSb 2DES �Ref. 37� and
has been neglected�. For pure Rashba SOI, when L�

−1=0 and
LR=L	, Eq. �6� predicts that dimensional confinement en-
hances LS with the dependence LS�
12�L	

2 /w�. However,
the strong cubic Dresselhaus SOI in InSb leads to a small L�

and, thus, is expected to largely inhibit the enhancement of
LS due to dimensional confinement.5,6 The observed signifi-
cant increase in LS as w decreases from 0.56 to 0.26 �m
indicates the L�

−2 term of Eq. �6� is greatly suppressed for the
ballistic InSb wires. Furthermore, the experimentally ob-
served dependence LS�2.4�L	

2 /w�, is in agreement, within
�
2, of the prediction for the enhancement of LS due to
dimensional confinement. Since L	 has been calculated ac-
counting for both Rashba and cubic Dresselhaus SOI, we
conclude that in the ballistic InSb wires dimensional confine-
ment not only affects spin relaxation due to Rashba SOI but
that it similarly suppresses spin relaxation arising from cubic

FIG. 4. �Color online� Dependence of the spin coherence length
LS on wire width w and on spin precession length L	�0.35 �m, at
T=0.4 and 1.3 K.
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Dresselhaus SOI. However, the effect of dimensional con-
finement on spin relaxation due to cubic Dresselhaus SOI is
an unresolved issue.5,6,8 Antilocalization studies on narrow
InGaAs wires8 have also suggested a large suppression of the
L�

−2 term in Eq. �6�. In contrast, spin relaxation probed by
optical time-resolved Faraday rotation spectroscopy6 have
indicated that cubic Dresselhaus SOI may, in fact, limit the
enhancement of LS in InGaAs wires.

The dependence of LS on T for the four separate wire
widths is depicted in Fig. 5. A weak T dependence of LS is
observed for all w, with LS gradually decreasing as T in-
creases. Since experimentally all wires follow a similar T
dependence and since the enhancement LS /LS

2D is indepen-
dent of T in the experimental range, the decrease in LS with
increasing T is presumed to originate in the same mecha-
nisms that limit LS

2D. As mentioned above, because L	� le in
the parent InSb/InAlSb heterostructure, a reduction in LS

2D

implies an increase in scattering. Both phonon and electron-
electron scattering are expected to increase with T and offer
mechanisms for decreasing LS

2D. It has been noted that scat-
tering mechanisms can show a much larger impact on spin
relaxation as compared to momentum relaxation.51 Even
though the increase in phonon and electron-electron scatter-
ing with T do not result in an observable effect on le in the
experimental range of T, yet the antilocalization data do sug-
gest an effect on LS.

B. Phase coherence length

Figures 6 and 7 contain the dependence of L� on T ob-
served in the InSb wires. For all w, L� follows a similar T
dependence, with L� decreasing with increasing T. The simi-
larity of the T dependence of L� in the different wires is
portrayed in a logarithmic plot of L�, normalized to its value
at 0.4 K, versus T �inset of Fig. 6�. After normalization to
L��0.4 K� the data from all wires collapse onto a single
curve, within experimental errors.

The inset of Fig. 6 and the logarithmic plots of L� versus
T displayed in Fig. 7 reveal that L� approaches a constant
value �L��8 �m� as T→0. Phase coherence phenomena
have been investigated in 2DESs �Ref. 26� and hole
systems,52 wires,34,43,46,47,53 and quantum dots.54,55 Often it is

reported that the phase coherence time ��, where L�

�
D��, approaches a constant value as T→0. Various
mechanisms have been invoked to explain the saturation of
L� and �� at low T. Such mechanisms include magnetic scat-
tering from trace magnetic impurities46 and zero-point fluc-
tuations of the electromagnetic environment.56 The overall
experimentally determined dependence of L� on T can be
captured by46

� 1

L�
�2

= � 1

L�
0 �2

+ � 1

L�
T�T�

�2

, �7�

where L�
0 is a constant. The entire T dependence of L� is then

contained in L�
T�T�, often observed to follow a power law,

L�
T�T��T−�. The exponent � characteristically depends on

the dominant phase decoherence mechanism.46

FIG. 5. �Color online� Spin coherence length LS as a function of
T for four values of the wire width. Dashed lines form guides to the
eye.

FIG. 6. �Color online� T dependence of the phase coherence
length L� in wires with four different widths. Dashed lines for
widths of 0.36 and 0.56 �m form guides to the eye. Inset: logarith-
mic plot of the T dependence of L�, normalized by its value at 0.4
K, for all wires.

FIG. 7. �Color online� Logarithmic plot of L� vs T for the InSb
wires of width �a� 0.16 �m, �b� 0.26 �m, �c� 0.36 �m, and �d�
0.56 �m. Dashed lines form guides to the eye. In all wires L�

appears to be limited by L /3=8 �m �solid line� as T→0.
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In the experimental range of T for the InSb wires, the term
in L�

0 in Eq. �7� has a determining effect on L�. Furthermore,
Fig. 7 demonstrates that the saturation value L�

0 is largely
independent of w, leading to a lack of a clear dependence of
L� on w in the experimental data. Below we will show that
the observed saturation, resulting in L�→L�

0 �8 �m as T
→0, originates in the finite size of the InSb wires. Previous
investigations on GaAs wires57 have similarly reported an L�

limited by wire geometry.
We have so far described G�B� by a model developed

for Q1D wires of infinite length �L�L��. Investigations of
localization phenomena have revealed that G�B� in finite
length wires can be influenced by the specific geometry of
the wires and the corresponding current and voltage mea-
surement probes.57–60 These studies have suggested that the
L� extracted by fitting G�B� measured in finite length wires
to an infinite wire model, represents an effective phase co-
herence length, determined by both L and by an inherent
phase coherence length ��. Here �� is determined by phase
decoherence mechanisms intrinsic to the material and is in-
dependent of wire length. In the limit w
��, the relation-
ship between the effective measured L� and the intrinsic ��

in finite wires can be described by57–60

L�

L
=

��

L
coth� L

��
� −

��
2

L2 . �8�

For Q1D channels, Nyquist dephasing often dominates at
low T.46 Nyquist dephasing results from the interaction of a
given conduction electron with the fluctuating electromag-
netic field generated by surrounding electrons and in one
dimension theoretically gives rise to46,61

1

��

= � kBT

�2D2g�0�w�1/3
, �9�

where g�0� represents the density of states at the Fermi level
and kB is the Boltzmann constant. As upon lowering T,
�� /L�1, the right side of Eq. �8� converges to a constant
value of 1/3. Thus, for the present InSb wires, it can be
expected that as T→0 the extracted L�→L�

0 =L /3�8 �m.
Indeed, Fig. 7 suggests that for all wires L� is limited by L /3
as T→0. Equation �8� can be approximated by L�

−2���
−2

+�2L−2 �Ref. 57� and, thus, can be related to Eq. �7� by
equating ��=L�

T .
Equation �8� characterizes the finite-size correction for the

singlet term and L�. Similar corrections apply to the triplet
terms which depend on LS.58,59 To determine how the finite
size of the wires affects L� ���� and LS, the measured G�B�
curves were fit to Eq. �2� using correction factors of the form
given in Eq. �8� for both �L�

−2+LB
−2�−1/2 and �L�

−2+�1,mLS
−2

+LB
−2�−1/2. Values for �� obtained from the fits after correc-

tion for finite L are displayed as a function of T in Fig. 8.
Figure 8 shows that �� in all wires follows a T−1/3 depen-
dence. The fact that �� in all four sets of wires agree with a
T−1/3 law suggests that the Nyquist mechanism is indeed re-
sponsible for phase decoherence in the InSb wires. In con-
trast to L�, these fits reveal that the values for LS are rela-
tively unaffected ��5%� by the finite length of the InSb
wires.

VI. CONCLUSIONS

The coherence lengths LS and L� in Q1D wires patterned
on an InSb 2DES are investigated through analysis of antilo-
calization phenomena, using a model modified for ballistic
transport. Concerning wire widths, a dependence LS�w−1 is
observed. LS�w−1 is predicted for diffusive wires in the mo-
tional narrowing regime and is here observed for ballistic
wires �w� le� in which L	� le. For w=0.16 �m, a factor
�2 enhancement of LS over unpatterned 2DES is measured.
As expected for wires of finite length, L� in all wires satu-
rates to L�→L /3=8 �m as T→0, with little or no observed
dependence on w. The Nyquist mechanism dominates intrin-
sic phase decoherence.
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