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Abstract

Carrier transport in materials is often diffusive due to momentum-relaxing scattering with

phonons and defects. Suppression of momentum-relaxing scattering can lead to the ballistic and

hydrodynamic transport regimes, wherein complex non-Ohmic current flow patterns, including

current vortices, can emerge. In the ballistic regime addressed here, transverse magnetic focusing

is habitually understood in a familiar single-particle picture of carriers injected from a source,

following ballistic cyclotron orbits and reaching a detector. We report on a distinctive nonlocal

magnetoresistance phenomenon exclusive to fermions, in an enclosed mesoscopic geometry wherein

transverse focusing magnetoresistance peaks also occur at values of the cyclotron diameter that are

incommensurate with the distance between the source and detector. In low-temperature experi-

ments and simulations using GaAs/AlGaAs heterostructures with high electron mobility, we show

that the peaks occur independently of the location of the detector, and only depend on the source-

drain separation. We reproduce the experimental findings using simulations of ballistic transport

in both semiclassical and quantum-coherent transport models. The periodicity of magnetic field

at which the peaks occur is matched to the lithographically defined device scale. It is found that,

unlike in transverse magnetic focusing, the magnetoresistance structure cannot be attributed to

any set of ordered single-particle trajectories but instead requires accounting for the collective dy-

namics of the fermion distribution and of all particle trajectories. The magnetoresistance is further

associated with current flow vorticity, a collective phenomenon.

I. INTRODUCTION

Ballistic carrier transport in solid-state systems occurs when charge carriers scatter pre-

dominantly against the device boundaries, rather than dissipating system momentum to the

lattice or undergoing mainly electron-electron scattering [1–7]. Ballistic transport phenom-

ena are often presented in terms of trajectories of single non-interacting particles, such as

cyclotron orbits under an applied magnetic field B. Here, we instead advance the conceptual

picture of collective dynamics in ballistic transport [1, 2, 8–12]. We present a previously un-

reported periodic magnetoresistance structure occurring at low B, in a confined transverse
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magnetic focusing (TMF) mesoscopic geometry in a high-mobility two-dimensional electron

system (2DES) in a GaAs/AlGaAs heterostructure. We evince that the origin of the magne-

toresistance structure cannot be traced to an ordered set of single-particle cyclotron orbits,

and requires consideration of all trajectories in the device and of the collective dynamics

of a fermion distribution including electron and hole excitations. Using experimental data

and high-resolution kinetic simulations based on two complementary numerical schemes, we

examine the factors that affect the magnetoresistance structure and lay out the essential

conditions required for its manifestation. We show how the magnetoresistance correlates

with current vorticity and backflow, collective properties significantly more complex than

single-particle trajectories as well as harder to access experimentally.

In contrast to ballistic carrier transport, the more common diffusive transport in the

solid state, governed by Ohm’s law, occurs when carrier mobility mean-free paths ` are

limited by momentum-relaxing processes such as electron-phonon and electron-defect scat-

tering which act to transfer momentum from the charge carriers to the lattice. Diffusive

transport breaks down when this scattering becomes sufficiently weak and hence ` suffi-

ciently long, as in two-dimensional particle systems in III-V heterostructures [1–5, 13–23],

in graphene [6, 7, 11, 24–33], in WTe2 [34–37], or in delafossites such as (Pd/Pt)CoO2 [38–

45]. Not affecting total system momentum or carrier mobility µ or `, momentum-conserving

electron-electron scattering also exists, and at long ` it determines whether transport is

ballistic or hydrodynamic. The ballistic regime occurs when electron-electron scattering is

weak, the hydrodynamic regime occurs when it is strong, resulting in charge flow akin to

a fluid. The hydrodynamic regime exemplifies collective transport and can lead to current

vortex formation due to viscous drag that arises due to interactions [1, 11, 21, 31, 37, 46].

Vorticity in the ballistic regime is on the other hand surprising because there it occurs in

the absence of interactions. Recent results in ballistic transport have challenged the single-

particle trajectory notion which e.g. has been used to design ballistic devices [24, 47]. It

has recently been shown that ballistic transport can produce complex current flow patterns

that defy the single-particle trajectory notion and can lead to collective phenomena such

as current vortices [1, 2, 9]. In this work, the experimental magnetoresistive phenomena

find an origin in such collective ballistic dynamics. These are depicted in terms of current

streamlines and voltage contour plots obtained from the kinetic simulations, further com-

pared to a quantum-coherent transport model. In related context, other work has studied
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voltage and charge contour plots in mesoscopic geometries [48, 49], or imaged the contour

plots by scanning gate microscopy [50].

The arrangement in which we study the magnetoresistance structure at lowB is a confined

TMF geometry. TMF is a quintessentially ballistic magnetotransport technique [2, 13, 16,

51–53] that has been applied to the characterization of Fermi surfaces [6, 16, 25, 32, 51, 52,

54], the measurement of electron-electron scattering [2], the detection of composite fermions

[55, 56], and the study of Andreev reflection [52] and spin-orbit interaction [57, 58].

II. DEVICE GEOMETRY AND QUALITATIVE DESCRIPTION

We consider a device geometry in a 2DES depicted in Fig. 1(a), a square defined by

boundaries with internal edge length L, and with current source and drain point contacts

(PCs) of conducting widths w � L placed near two corners along the same edge at center-

to-center distance Lsd (necessarily Lsd < L). Conventional current is injected into the

device through the source PC (corresponding to injection of holes, referring to positive

charges due to empty states below the Fermi contour [59–62]), and extracted through the

drain PC (corresponding to injection of electrons, filling states above the Fermi contour).

In the device under consideration (Fig. 1(a)) we have L = 15µm, Lsd = 13.8µm, and

w ≈ 0.6µm = 0.04L. The scattering of electrons off the internal device boundaries is

specular, as explained below. All measurements are performed at temperature T = 4.1 K.

In the presence of a perpendicular magnetic field B, carriers undergo semiclassical cyclotron

orbits with cyclotron diameter dc = 2~kF/(eB), where e denotes the elementary charge,

~ the reduced Planck’s constant, and kF the Fermi wavevector. The 3-terminal nonlocal

resistance Rnl is defined as the voltage measured between a detector PC and the drain PC

divided by the injected current I, where the detector PC is placed at a center-to-center

distance Lc < Lsd < L from the source PC (Fig. 1(b)). Rnl reaches a positive peak whenever

dc = Lc/nc, with nc an integer. These integer focusing peaks, observed in Fig. 1(c-f) for

nc = 1, 2, 3, constitute TMF, and are a prototypical signature of ballistic transport. They

can be understood in terms of single-particle ballistic trajectories of injected carriers which

follow semiclassical cyclotron orbits and reach the detector PC after nc−1 specular scattering

events off the boundary between source and detector PC. Yet notably, the device geometry in

Fig. 1(a) gives rise to an additional resonance condition visible as maxima in Rnl: dc = Lsd/n,
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with n an integer. This condition denotes a novel source-drain resonance, corresponding to

dc of a carrier trajectory injected at the source PC fitting an integer number of times into

Lsd (Fig. 1(a)). The matching maxima in Rnl occur at values of B independent of the

location of the detector PC between source and drain. Figures 1(c-f) show that the device

manifests the source-drain resonances experimentally at lower B, with distinct maxima in

Rnl for B that satisfy the resonance condition. The high-resolution simulations of ballistic

transport likewise predict the resonances. The source-drain resonance peaks occur for all

Lc < Lsd, and therefore, at effectively fractional nc = n(Lc/Lsd). As will be described,

unlike the TMF origin of the integer nc peaks, the fractional source-drain resonance peaks

cannot be attributed to any particular particle trajectory: they only occur from the collective

dynamics arising from a particle distribution. Further, while the integer peaks only require

ballistic transport over the scale of Lc, the fractional peaks require more stringent device-

scale ballistic transport along with specular boundaries.

The experimental device in Fig. 1(a) is defined on a 2DES of very high electron µ hosted

in a GaAs/AlGaAs heterostructure (Appendix A). Transport parameters of the 2DES are

listed in Appendix A, including the long mean-free path ` = 64.5µm at T = 4.1 K. Hence

` >> Lsd, L, attesting to the very weak momentum-relaxing scattering which allows ballistic

transport across the device. The Fermi wavelength λF ' 43 nm shows there are Nm =

w/(λF/2) ≈ 28 spin-degenerate transverse modes injected through the PCs into the device

and hence transport through the PCs is effectively classical. Further, the wet-etching process

used to define the boundaries in the 2DES (Appendix A) results in specular scattering

[1, 2, 17, 18, 20], thus allowing the fractional peaks to manifest in the device. The 15

µm × 15 µm device in Fig. 1(a) features 6 PCs along the bottom boundary. Current is

injected at the source PC at the right-end, and drained at the drain PC at the left-end. The

intermediate PCs serve as detectors at Lc = 2, 4, 6, 8 µm (Fig. 1(b)).

III. QUANTITATIVE RESULTS AND DISCUSSION

Figures 1(c-f) show the nonlocal resistance Rnl measured at T = 4.1 K as a function

of B and Lsd/dc. The integer nc = 1, 2, 3 peaks are conspicuous, e.g. for Lc = 2 µm the

nc = 1 peak occurs at B = 0.095 T and for Lc = 8 µm the nc = 3 peak occurs at B = 0.077

T. Smaller clear peaks appear at lower B, below nc = 1, each with Rnl amplitude ' 50 Ω
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FIG. 1. (a) Optical micrograph of the device fabricated on the GaAs/AlGaAs heterostructure,

with PCs a-f, where a = drain and f = source. Paths leading to each PC are colored differently,

while black regions indicate etched barriers defining device boundaries. L = 15µm, distance a-f

= Lsd = 13.8µm and PC width w = 0.6µm. Current source (I, arrow indicates direction of

conventional current) and voltage measurement (V ) connections for Lc = 8 µm are indicated.

Semiclassical cyclotron orbits corresponding to dc = Lsd/n where n = 1, 2 are drawn in. (b)

Measurement configurations for Lc = 2, 4, 6, 8 µm, with Lc indicated by a blue trace at the bottom

edge. (c-f) Rnl versus B (bottom axis) and Lsd/dc (top axis) at T = 4.1 K, for Lc = 2, 4, 6, 8 µm (as

in (b)). Inset in (c) shows Rnl versus Lsd/dc zoomed into the fractional peaks. ∆(Lsd/dc) = ∆n ≈ 1

and height of fractional peaks ≈ 50 Ω.
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and at values of dc incommensurate with Lc. We note that firstly, more fractional peaks

appear for a detector closer to the source, with detector PCs at Lc = 2, 4, 6, 8 µm detecting

5, 3, 2 and 1 fractional peaks respectively. This observation suggests that Lc � dc is a

favorable condition for the fractional peaks to manifest. Secondly, the value of B at which

the fractional peaks occur is independent of Lc (Fig. 1(c-f)). For example, we observe that

the fractional n = 1 peak occurs at the same B for all detector PCs. In contrast, the integer

nc = 1 peak occurs at Bnc=1 = (2~kF/e)(1/Lc) that depends on Lc. Finally, the periodicity

of the fractional peaks is also independent of Lc, unlike the integer peaks the periodicity of

which depends on Lc as ∆B = (2~kF/e)(1/Lc) (Fig. 1(c-f)).

We compare the experimental results to simulations of ballistic magnetotransport based

on the collisionless Boltzmann transport equation in the T → 0 limit (Appendix B),

v̂F .
∂f

∂x
+

(
2

dc

)
∂f

∂θ
= 0 (1)

where f(x, θ) is the carrier probability distribution, x ≡ (x, y) are the spatial coordinates, θ

is the angle on the (circular) Fermi contour and v̂F ≡ (cos(θ), sin(θ)) is the unit vector along

the Fermi velocity. We solve Eq. 1 using two numerical schemes: a finite volume (FV) scheme

where the distribution is solved for on a uniform grid of the (x, θ) coordinates, and a Monte-

Carlo (MC) scheme where the trajectories of injected carriers are evolved by analytically

computing their intersections with the device boundaries at each specular scattering event

off the boundaries. The former is a “bulk” scheme, whose output is the distribution over

the entire device, while the latter is a “boundary” scheme where the solution is confined to

the device boundaries, and is therefore computationally faster than the bulk scheme. At

the source PC, we impose f(θ) = cos(θ)/2 where θ ∈ [−π/2, π/2] is the angle with respect

to the normal to the device boundary, corresponding to injection of holes below the Fermi

contour. Similarly, at the drain PC we impose f(θ) = − cos(θ)/2, corresponding to injection

of electrons above the Fermi contour [1, 2, 9, 59–62].

We perform simulations in a square domain of side L (in arbitrary units), with vary-

ing PC widths w = 0.002L − 0.02L (Appendix C), and for varying source and drain PC

distances from the sidewalls (Appendix D), described by Lwall = 1
2
(L − Lsd − w) (device

schematic in Fig. 2(a)). The simulations also consider specular as well as absorbing (non-

specular) boundaries (Fig. 2). In the actual experiment’s device as mentioned we have

L = 15µm, Lsd = 13.8µm, w = 0.04L = 0.6µm and hence Lwall = 0.3µm, and its bound-
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FIG. 2. (a) Device schematic for MC scheme simulations with L (in arb. units), w = 0.002L and

Lwall = 0. (b) Contour plot of simulated Rnl vs Lc/Lsd and Lsd/dc for specular device boundaries.

Lsd is fixed while dc and Lc are varied. (c) Contour plot as in (b) but with absorbing (non-

specular) side and top boundaries, resulting in absence of fractional peaks. (d) Rnl vs Lsd/dc

for Lc/Lsd = 0.1, 0.3, 0.5, 0.7 for specular boundaries (black, solid) and absorbing side and top

boundaries (orange, dashed). In all panels blue vertical lines indicate the integer nc = 1 TMF

peak (width indicated by shaded blue region bounded by vertical dashed lines). The width of the

TMF peak is attributed to the finite width of source, drain and detector PCs (w), and decreases

as Lc is increased. Gray vertical bars indicate analytically expected locations of fractional peaks

(at integer Lsd/dc) and their thickness signifies the spread in the expected locations due to finite

w. Unlike TMF peaks, fractional peaks require specular boundaries.

.
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aries are specular. In the simulations we consider the fiducial case of w = 0.002L for all

three PCs and Lwall = 0, corresponding to source and drain PCs flush with the sidewalls

and Lsd = L − w. Figure 2(b) shows a contour plot, simulated in the MC scheme, of

Rnl(Lc/Lsd, Lsd/dc) where Lsd is constant while dc and Lc are varied, for a device with

specular boundaries, measured using a fictitious detector PC centered at Lc. The inten-

sity of red (blue) color in the contour plots indicate the magnitude of positive (negative)

Rnl measured by the detector. The locations of the center of the source and drain PCs

correspond to Lc/Lsd = 0 and Lc/Lsd = 1 (for which Lc = L − w if Lwall = 0) on

the vertical axis, respectively. The integer nc TMF peaks appear as hyperbolas obeying

(Lc/Lsd)(Lsd/dc) = Lc/dc = nc. The fractional peaks at integer n appear as vertical fea-

tures, independent of Lc/Lsd at every Lsd/dc = n (see e. g. n = 5 indicated by a black

dot in Fig. 2(b)). When Rnl is computed for varying Lsd/dc ∝ B at a fixed Lc/Lsd, cor-

responding to a horizontal cut in the contour plot, the source-drain resonances appear as

peaks at fractional nc = n(Lc/Lsd). These peaks are depicted vs Lsd/dc ∝ B in Fig. 2(d),

for better visualization of Fig. 2(b). By considering Figs. 2(a,b,d), we are able to explain

features observed in the experimental data. First, the intersections of the vertical lines

(due to source-drain resonances) with the hyperbolae of integer TMF peaks reveals why

detector PCs closer to the source detect more fractional peaks. For a detector PC with

Lc/Lsd = 0.1, the fractional peaks occur at nc = 0.1n, yielding 9 fractional peaks below

nc = 1 (including the one at n = 9, which lies within the shaded blue region in Fig. 2(d)).

For a PC at Lc/Lsd = 0.3, there are only 3 such peaks. Second, the values of Lsd/dc ∝ B

at which the fractional peaks occur are indeed independent of Lc, depending instead on the

device-scale Lsd. As a result, the periodicity of the fractional peaks is also independent of

Lc, unlike the integer TMF peaks whose periodicity is ∝ 1/Lc. In Fig. 2(c), we consider

the same device, but with the side and top boundaries absorbing rather than specular. The

fractional peaks are now completely absent, with only the integer nc TMF peaks visible in

Rnl(Lc/Lsd, Lsd/dc). The absence of the fractional peaks signifies that device-scale specu-

lar boundary scattering is also necessary, unlike for integer TMF peaks which only require

specular scattering off the bottom boundary.

In Fig. 2(b) where w = 0.002L, the modeled oscillation amplitude of Rnl for the fractional

peaks is larger than of the integer peaks, unlike the experimentally measured amplitude

in Fig. 1(c-f). To explore the change, Rnl was modeled in the MC scheme for variable

9



source and drain PC width w in Appendix C. The model indicates that as w is increased,

the fractional peaks lose prominence and eventually the amplitudes of the integer peaks

exceed those of the fractional peaks. The experimental findings in Fig. 1(c-f) hence are

explained by relatively wider w. The effects of larger source and drain PC distances Lwall

from the sidewalls were also modeled in Appendix D. Increasing Lwall substantially diffuses

the fractional peaks, contributing to the observations in Fig. 1(c-f). Hence narrow w and

small Lwall are beneficial for the fractional peaks to manifest. We have thus achieved a

minimal model that reproduces the essential features of the experiment.

We performed a quantitative correlation between the experimental data and the model,

via comparison of B-values at which the fractional peaks occur in the experiment and the

model. The model predicts a periodicity in B given by ∆(Lsd/dc) = ∆n = 1, where

Lsd/dc ∝ B. Analysis of the periodicity in B in the data in Fig. 1(c-f) allows calculation of

the device’s Lsd, in which any small systematic offsets in the experimental B cancel out. This

value of Lsd can be vetted against the lithographic length. Analysis of the data in Fig. 1(c-f)

averaging over all PC combinations, yields Lsd = 15.8±3.1 µm, in good agreement with the

lithographic length Lsd = 13.8 µm in Fig. 1(a).

Individual single-particle trajectories can shed light on the unique origins of the fractional

peaks, as illustrated in Fig. 3 where a square device of internal dimensions L is modeled

in the MC scheme. Figure 3 examines the trajectories that land in the detector PC, due

to carriers originating from either the source (holes) or from the drain (electrons), using

an approach labeled angle-resolved trajectory spectroscopy (ARTS, details in Appendix B).

In Figs. 3(a,b,c,d) all PCs have w = 0.002L, Lwall = 0, while the source PC is centered

at 0.999L, and the drain PC centered at 0.001L (Lsd = L − w = 0.998L ≈ L, source

and drain PCs flush with the sidewalls). The detector PC is centered at 0.9L (hence Lc =

0.099L ≈ 0.1L) for Fig. 3(a,b,c,e,f), while it is centered at 0.7L (Lc = 0.299L ≈ 0.3L) for

Fig. 3(d,g,h). In Fig. 3(a), dc = Lc = 0.099L is chosen to correspond to the condition for

observation of the integer nc = 1 TMF peak. Shown are a set of trajectories emanating from

the source, with small injection angles θi centered around zero (tangents indicated by dashed

red lines). These trajectories correspond to the usual single-particle intuition associated with

the integer TMF peaks, with the spread in the injection angles due to the finite sizes of the

source and detector PCs and the angular spread of trajectories due to the Fermi contour.

Such trajectories are relatively insensitive to θi ≈ 0, robustly landing at the detector PC
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FIG. 3. (a) Trajectories corresponding to the nc = 1 TMF peak in a square device of size L × L,

simulated using the MC scheme. Cyclotron orbits from the source PC (at right) land directly on the

detector PC (indicated by a blue dot), here at Lc ≈ 0.1L. Red (black) dashed lines show tangents

to the trajectories at the source (detector), and θd denotes the arrival angle at the detector. (b)

Two trajectories arriving at the detector PC at close angles θd can have traced very different paths

through the device. The red (blue) trajectory indicates a hole (electron) injected from the source

(drain, at left). (c) Trajectories (red) arriving at the detector PC over a range of θd can also arise

from non-diverging nearly identical paths through the device. (d) Trajectories corresponding to the

nc = 1 TMF peak with the detector location at Lc ≈ 0.3L. Trajectories injected within a smaller

θi span now reach the detector. (e) ARTS of θi (injection angle at source PC (hole trajectories,

red) or drain PC (electron trajectories, blue)) versus arrival angle θd at detector PC, for the nc = 1

TMF peak for Lc ≈ 0.1L, as in (a). Contiguous-dot structure at θd, θi ≈ 0 corresponds to the

nc = 1 TMF peak. (f) ARTS for the fractional n = 4 (nc = 0.397) peak for Lc ≈ 0.1L as in

(b,c). The gap at θi ≈ 0 correlates with the appearance of the fractional peak. No noticeable

contiguous-dot patterns are present. (g) ARTS for the nc = 1 TMF peak for Lc ≈ 0.3L, as in

(d), showing that the contiguous-dot structure corresponding to the nc = 1 TMF peak lies within

a tighter span in θi compared to (e). (h) ARTS for the fractional n = 4 (nc = 0.397) peak for

Lc ≈ 0.3L.
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after following a direct cyclotron-orbit path from source PC to detector PC, conforming to

TMF. The dashed black lines indicate tangents to the trajectories arriving over arrival angles

θd at the detector PC, for −0.13 < θd < 0.13 (in rad). In Figs. 3(b-c), dc = Lsd/4 = 0.2495L

is chosen to correspond to the condition for observation of the fractional n = 4 (nc = 0.397)

peak. Figure 3(b) illustrates two trajectories arriving at the detector PC at very nearly

identical θd ≈ 0.5807...0.5808 (tangent indicated by dashed black line), but having traversed

very different trajectories through the device: the red trajectory follows a hole injected from

the source PC (at θi indicated by dashed red line), the blue trajectory follows an electron

injected from the drain PC (at different θi indicated by dashed blue line). Yet Fig. 3(c)

reveals that also trajectories exist which arrive at the detector PC over a small range of

θd (tangents indicated by single dashed black line and values of θd indicated in the figure),

but originate from still closely bunched non-diverging trajectories (red trajectories following

holes injected from the source PC, θi values indicated by single dashed red line). Figure 3(d)

shows trajectories at θi ≈ 0 corresponding to the integer nc = 1 TMF peak, but now for

a different detector location, Lc ≈ 0.3L. The figure shows that the span of θi for which

injected trajectories reach the detector decreases as the detector PC is moved further away

from the source PC.

The ARTS plots in Figs. 3(e-h) show the injection angle θi at source (hole trajectories,

coded in red) or drain (electron trajectories, coded in blue) PCs vs the arrival angle θd

at the detector PC. The opacity of the dots is weighted by cos(θi), reflecting the injection

distribution over θi in the MC scheme (fewer trajectories injected at high |θi| also mean fewer

detected at the detector PC). Figure 3(e) corresponds to Fig. 3(a), with dc = Lc conforming

to the condition for observing the integer nc = 1 TMF peak, while Fig. 3(f) corresponds to

Figs. 3(b-c), with dc = Lsd/4 conforming to the condition for observing the fractional n = 4

(nc = 0.397) peak. In Fig. 3(e) the contiguous-dot structure observed for θd, θi ≈ 0 indicates

the integer nc = 1 TMF peak, and is attributed to the trajectories depicted in Fig. 3(a): over

a small range of θi trajectories reliably land at the detector PC in a one-to-one relation to θd.

The width of the contiguous-dot structure is proportional to w. Less apparent contiguous-

dot structures also exist in Fig. 3(e) for θd ≶ 0, corresponding to trajectories originating

from the source or drain PCs and reaching the detector PC with more than one specular

scattering event off the boundaries. Notably, between the contiguous regions in Fig. 3(e)

exists a highly unordered pointillistic structure with a mix of electron and hole trajectories.
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The spatial profiles of trajectories in the unordered regions reveal that such trajectories

that land on the detector PC at infinitesimally close θd can have uncorrelated θi, reflecting

similar observations in Fig. 3(b). The contiguous-dot structure at θd, θi ≈ 0 originating in

the integer nc = 1 TMF peak provides the dominant contribution to Rnl at the detector

PC. The unordered regions do not cooperate to contribute a sizable signal. In Fig. 3(f) the

horizontal blurred gap over all θd for θi ≈ 0 correlates with the fractional n = 4 (nc = 0.397)

peak (explored for other n in Appendix F). Example trajectories are shown in Figs. 3(b-c).

The ARTS structure remains overall unordered, without noticeable contiguous-dot patterns,

indicating mostly divergent trajectories. Hence, apart from the gap, strikingly ARTS reveals

an absence of any contiguous structure to which the fractional peak can be attributed, unlike

in the case of the integer TMF peak. The gap indicates a dearth of trajectories reaching the

detector PC. This dearth is more acutely sensed in transport because the number of injected

trajectories is weighted by cos(θi), maximal for θi ≈ 0, congruent with the appearance of

a fractional peak in measurements and modeling. We next consider a different detector

location, Lc ≈ 0.3L. In Fig. 3(g), we set dc = Lc, conforming to the condition for observing

the integer nc = 1 TMF peak. We again observe the contiguous-dot structure arising from

trajectories near θi ≈ 0 landing directly at the detector PC as expected at the integer nc = 1

TMF peak. Comparison with Fig. 3(e) shows that the width of the contiguous-dot structure

is inversely related to Lc, meaning that trajectories within a tighter span of θi reach the

detector, consistent with Fig. 3(d). In Fig. 3(h) we consider the condition for the n = 4

fractional peak again, but for Lc ≈ 0.3. The blurred gap near θi ≈ 0 is again observed,

indicating a dearth of trajectories reaching the detector PC. The ARTS structure overall

appears strikingly similar to Fig. 3(f), hinting that the phenomenology of fractional peaks is

independent of the detector PC location. We infer that the source-drain resonance results in

an increased number of hole (electron) trajectories finding an expeditious path from source

(drain) PC to drain (source) PC, rapidly exiting the device and never arriving at the detector

PC irrespective of its location. While the ARTS gap is striking, the exact mechanism of its

relation to the formation of maxima in the nonlocalRnl at the detector PC bears investigating

in future work. Even the trajectories corresponding to the fewer dots within the blurred

gap trace a complex trajectory through the device. The lack of dominant contribution from

an ordered contiguous-dot structure (such as for TMF) precludes an intuitive explanation

based on obvious single-particle trajectories. The fractional peaks in Rnl appear to build
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from many random events in the collective dynamics of the particle system. Fractional

peaks hence require consideration of all trajectories and the collective dynamics of a particle

distribution which includes electrons and holes. In contrast, the integer TMF peaks can be

understood from more intuitive single-particle semiclassical ballistic cyclotron orbits with

θd, θi ≈ 0.

IV. CORRELATION WITH BACKFLOW AND VORTICITY

Another striking manifestation of the source-drain resonance condition is contained in

Fig. 4, where we examine the relation between the spatial transport profile and the source-

drain resonances. Figures 4(a-d) are obtained via the FV scheme and show current stream-

lines and color-coded voltage contour plots in the steady-state for an L × L device with

specular boundaries, with Lsd = 0.94L, Lwall = 0.02L and w = 0.02L, at Lsd/dc = 2, 2.5,

3 and 3.5 respectively. As mentioned previously, the ballistic regime can exhibit current

vortices, characterized by a non-zero vorticity ω = ∇× j, where j denotes the current den-

sity. The vector sum of many individual electron and hole trajectories over time gives rise

to j in the steady-state, which is hence the outcome of collective dynamics more intricate

than understood from single-particle cyclotron orbits. Figure 4(a) examines the profiles for

the fractional n = 2 peak, at Lsd/dc = 2. A focusing of current streamlines occurs at the

center of the bottom edge, with the conventional current flow from the source indicated by

arrows. In keeping with the previously used color scheme, a red shading indicates a local

overdensity of holes and a positive voltage, while blue shading indicates a local overdensity

of electrons and a negative voltage. Fig. 4(a) shows an overdensity of holes and a positive

voltage everywhere throughout the bottom edge. This overdensity of holes and positive

voltage correspond to the fractional n = 2 peak, as expected since fractional peaks occur in-

dependent of detector location Lc. The associated current flow is unidirectional from source

to the drain along the bottom edge. Figure 4(b) examines the profiles at n = Lsd/dc = 2.5.

The focusing of current streamlines occurs where expected at the bottom edge but the over-

density of holes is around the center of the semiclassical cyclotron orbits (e.g. between the

source and the first focusing location) now replaced with an overdensity of electrons and a

locally negative voltage. The electrons originate from the drain and traverse the left, top and

right boundaries. The overdensity of electrons and negative voltage result in a local back-
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FIG. 4. Current streamlines and voltage contour plots for an L×L device with specular boundaries,

with Lsd = 0.94L, Lwall = 0.02L and w = 0.02L for (a) Lsd/dc = 2, (b) Lsd/dc = 2.5, (c)

Lsd/dc = 3, and (d) Lsd/dc = 3.5. (e) Averaged vorticity 〈ω〉 vs Lsd/dc (averaging regions dc×dc/2

yellow shaded in (a) and (b)). Vertical dashed black lines indicate integer Lsd/dc (expected location

of fractional peaks in Rnl), while red lines indicate positions of (a-d) along Lsd/dc = n. (f) Rnl

vs Lsd/dc for Lc = 0.102L, for comparison with 〈ω〉. Fractional peaks in Rnl occur near integer

Lsd/dc, with systematic shifts due to finite w (Appendix C). The periodicity in 〈ω〉 nearly equals

that in Rnl. nc = 1 corresponds to the first TMF peak.
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flow of the current, resulting in a striking phenomenon: the appearance of current vortices.

Figures 4(c,d) repeat and confirm the phenomena, for the fractional n = Lsd/dc = 3 peak

and for the half-integer n = Lsd/dc = 3.5 condition. At integer n = Lsd/dc, corresponding to

a fractional peak, the voltage along the bottom edge does not alternate sign (Figs. 4(a,c)),

while at half-integer n = Lsd/dc the voltage along the bottom edge alternates sign, causing

backflow and current vortices (Figs. 4(b,d)).

Figures 4(e,f) are also obtained via the FV scheme. Figure 4(e) considers the vorticity

averaged over an area dc×dc/2, corresponding to a box covering one cyclotron orbit with its

right-bottom corner located at the midpoint of the source PC (indicated by shaded yellow

region in Figs. 4(a,b)), and shows the area-averaged vorticity 〈ω〉 =
∫
ω dx dy vs Lsd/dc.

Remarkably, Fig. 4(e) shows that periodic features appear in 〈ω〉 vs Lsd/dc and that 〈ω〉

peaks for half-integer Lsd/dc. The spatial profiles of j in also reveal the presence of current

vortices along the bottom edge around half-integer values of Lsd/dc (Figs. 4(b,d)) and the

absence of vortices at integer values of Lsd/dc (Figs. 4(a,c)). As noted, the absence of 〈ω〉 at

integer Lsd/dc corresponds to the existence of positive voltages throughout the bottom edge,

in turn corresponding to the fractional peak in Rnl independent of Lc. At half-integer Lsd/dc

locally negative voltages along the bottom edge cause the current backflow required for 〈ω〉.

In Fig. 4(f), Rnl is plotted vs Lsd/dc for an arbitrarily chosen Lc = 0.102L. In Fig. 4(e)

the periodicity in 〈ω〉 is found to be ∆(Lsd/dc)〈ω〉 = 1.077 ± 0.121 ≈ ∆n = 1, equalling

the periodicity expected for the fractional peaks in Rnl. This indicates a strong correlation

between 〈ω〉 (a property of the bulk of the device, not directly visualized experimentally)

and Rnl (a property measured at the device boundary). At present a complete physical

insight for the correlation between 〈ω〉 and Rnl is beyond the scope of this work. However

the correlation underlines the importance of collective dynamics in ballistic transport, and

highlights a complexity reaching beyond single-particle trajectories.

V. IMPLICATIONS AND CONCLUSIONS

The experimental measurements and simulations both point to the existence of hith-

erto unsuspected structure in the nonlocal ballistic magnetoresistance Rnl(B) in a square

mesoscopic geometry with source, drain and voltage detection PCs, similar to the TMF mea-

surement geometry. Rnl(B) vs Lsd/dc ∝ B, recorded at the detector PC, shows a periodic
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structure at low B, with peaks at locations where dc obeys Lsd/dc = n, where n = 1, 2, 3...

Since Lsd 6= Lc, the peaks occur at fractional nc = Lc/dc, unlike the TMF peaks that occur

at integer nc. The fractional peaks occur at source-drain resonances where in a semiclassical

cyclotron orbit framework, injected carriers from the source PC would impinge directly on

the drain PC after n− 1 specular reflections off the device boundary. However unlike TMF

peaks, fractional peaks cannot be explained by single-particle ballistic trajectories. The

particle trajectories leading to the fractional peaks are complex, and no single dominant

contribution from a coordinated ordered group of trajectories is identifiable. The lack of

dominant coordinated trajectory contribution forestalls an explanation based on conspicu-

ous single-particle trajectories. Instead, the fractional peaks in Rnl(B) vs B originate in the

collective dynamics of the fermionic particle distribution, including electrons and holes, and

require analysis and averaging of all trajectories.

Further the source-drain resonances and fractional peaks (boundary properties) are anti-

correlated with vorticity in the current density streamlines, a bulk property and quintessen-

tially a collective flow phenomenon. The current density itself results from the time-averaged

collective sum of many individual electron and hole trajectories. The amplitude of the frac-

tional peaks is sensitive to the locations of source and drain PCs and to PC conducting

widths, but not to the location of the detector PC. The insensitivity to the location of the

detector PC is related to the disappearance of vorticity along the bottom boundary at the

condition of the fractional peaks.

The notable match between experiments and simulations supports the physical under-

standing that has been gained. The simulations can hence lead to new experimentally

verifiable phenomena in ballistic transport in 2DESs and 2D hole systems or in recent ma-

terials with long carrier mean-free paths. The combined experiments and simulations can

in future work also shed light on less understood and experimentally less-accessible aspects

of low-dimensional transport, particularly vorticity. A main outcome of the work lies in the

realization that ballistic transport results from a collective dynamics of a particle distribu-

tion and supports phenomena substantially more elaborate than those ostensibly deduced

from single-particle cyclotron orbits.
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VI. APPENDICES

A. Appendix A: Experimental methods

The device is fabricated from a high-µ GaAs/AlGaAs heterostructure epitaxially grown

using optimized molecular beam epitaxy. The 2DES resides in the GaAs quantum well, with

depth (from the surface) of 190 nm and width 26 nm. The heterostructure uses a stepped

barrier with Al alloy fractions 23% and 32% and is top- (9 × 1011 cm−2) and bottom-doped

(4 × 1011 cm−2) using Si δ−layers in Al0.32Ga0.68As with a setback of 80 nm. The growth

and optimization of similar heterostructures is discussed in Ref. [63]. Samples in the van

der Pauw configuration provide the transport parameters of the material under the same

conditions as the device measurements, as listed in Table I. The transport parameters are

derived from sheet resistance and Hall measurements accounting for conduction band non-

parabolicity with a Γ-point effective mass m = 0.067me where me denotes the free electron

mass. In particular, ` = 64.5µm is much larger than the device size ∼ 15µm, and hence

transport through the device is in the ballistic regime.

For device fabrication, a Hall mesa is first patterned using photolithography followed by

wet etching in H2SO4/H2O2/H2O solution. The active region of the sample containing the

square mesoscopic device is patterned using electron beam lithography using PMMA as the

etching mask, followed by gentle and shallower wet etching in the same solution, resulting

in smooth device boundaries. The depletion layer (∼200 nm) forming between 2DES and

etched boundaries smoothens out the potential over length scales smaller than the Fermi

wavelength λF by exponentially attenuating the high spatial frequency components of the

potential. This results in specular boundaries. N-type Ohmic contacts are annealed InSn.
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TABLE I. Transport parameters at T = 4.1 K

Sheet resistance 2.74 Ω/�

2D electron density NS 3.40×1015 m−2

Mobility µ 670 m2/Vs

Fermi wavevector kF 1.46×108 m−1

Fermi wavelength λF 43.0 nm

Fermi velocity vF 2.46×105 m/s

Fermi energy EF 11.9 meV

Mean-free path ` 64.5 µm

The device is measured in a cryostat at T = 4.1 K after LED illumination and stabilization.

All measurements are obtained using low-frequency lock-in techniques under low ac current

excitation (100 nA to 200 nA). To experimentally detect and resolve the fractional peaks,

very precise measurements of B are needed, achieved using a gaussmeter and high-resolution

stepping of the magnet current in each experimental run.

B. Appendix B: Transport simulations

To simulate magnetotransport in the devices in the FV scheme BOLT [8] is used, a solver

framework for the Boltzmann transport equation (Eq. 1). The modeling takes the band

structure of the material and device geometry (spatial and momentum space shape) as

input. A square device is considered, with spatial dimensions L× L, discretized into 250 ×

250 numerical zones. In momentum space, we take the zero-temperature limit and hence

the carriers are confined to the nearly circular Fermi contour, which is discretized using 1024

numerical zones. This 1D momentum space allows the simulations to be sped up significantly.

The model assumes that transport is collisionless (i.e., there are no momentum-relaxing or

momentum-conserving electron-electron interactions), and the system is in the ideal ballistic

regime. The device boundaries are assumed to be perfectly specular. Current injection

(extraction) is achieved by imposing a shifted Fermi-Dirac distribution at the location of

the source (drain) contacts. The device is initialized with a thermal distribution everywhere

else, which is then evolved as a function of time until steady state is reached. Currents and

voltages at any time instant can then be calculated from the carrier distribution function as
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described in [8].

In the MC scheme, holes (electrons) are injected through the source (drain) by randomly

sampling the distribution P (θi) = 0.5 cos(θi) with N = 2× 105 particles. The trajectory of

each injected particle is evolved analytically by computing the intersections of the circular

orbits with the device boundaries, until the particle exits through either the source or the

drain. For the ARTS (angle-resolved trajectory spectroscopy) calculations, we discretize the

arrival angle, θd, into N = 100000 equally-spaced angles, each of which generates a single

trajectory. We then analytically integrate this trajectory (as in the MC scheme) backwards

till it reaches the source or the drain. We note the final angle θi which the trajectory makes

upon striking the source or drain, which we call the injection angle. Each point in the ARTS

plots (Figs. 3(d,e)) corresponds to a single trajectory measured by the detector, with its size

weighted by a cos(θi) factor. The uniform discretization in the ARTS scheme is essential

for a key point: the random distribution of trajectories in the ARTS plots is not due to a

random sampling of the trajectories, but rather due to a deterministic outcome obtained by

analytically evolving trajectories that are equally spaced on the Fermi contour.

FIG. 5. Comparison of normalized simulated Rnl (in arbitrary units) vs Lsd/dc obtained via the

FV scheme (blue) and the MC scheme (orange) at Lc = 0.1L, in a L× L device with w = 0.02L ,

Lwall = 0.02L and Lsd = 0.94L. Vertical black dashed lines indicate integer values of Lsd/dc.

.

The MC and FV schemes solve the same semiclassical Boltzmann equation (Eq. 1), yet

via different numerical schemes. The MC scheme analytically computes the intersections of

individual carrier trajectories with the device boundaries, while the FV scheme evolves the
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carrier distribution over the entire device as a function of time. Each scheme has its own

advantages - the MC scheme is inherently faster because calculations are performed only at

device boundaries, while the FV scheme allows for visualization of properties in the bulk of

the device (such as current vortices). Figure 5 compares Rnl (in arbitrary units) vs Lsd/dc

obtained using the two schemes at detector location Lc = 0.1L in a square device of side L,

with Lwall = 0.02L, w = 0.02L and Lsd = 0.94L. The results have been normalized to aid

comparison, and indicate that both numerical schemes yield consistent results.

C. Appendix C: Effect of source and drain PC width w on fractional peaks

FIG. 6. Rnl vs Lsd/dc simulated using the MC scheme for a square device of size L×L with varying

source and drain width w while Lwall = 0 is kept constant. Widths w are increased from 0.002L to

0.02L upwards. Vertical black dashed lines mark the locations of fractional peaks (integer values

of Lsd/dc). The fractional peaks decrease in prominence as w increases.

.

We observe that in the modeling in Fig. 2(b) with narrow w = 0.002L, the modeled

oscillation amplitude of Rnl for the fractional peaks is larger than for the integer peaks,
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while the experimentally measured amplitude in Fig. 1(c-f) (where w ≈ 0.04L) shows the

opposite trend. Hence, using the MC scheme we modeled Rnl for variable source and drain

PC width w, keeping Lwall = 0. We use the same earlier square device, with dimensions

L × L in arbitrary units and specular boundaries. Results are depicted in Fig. 6, showing

that an increase in w results in a decrease in fractional peak amplitudes and in a small

systematic shift of the peak to Lsd/dc & n. As w is increased, the fractional peaks lose

prominence and eventually the amplitudes of the integer peaks surpass amplitudes of the

fractional peaks. Moreover, for w = 0.002L fractional peaks occur at exactly dc = Lsd/n

and are very sharp, much narrower than the integer TMF peaks, which are broadened by

the angular spread of the injected carriers due to the existence of a Fermi contour.

D. Appendix D: Effect of distance of source and drain PCs from side walls Lwall

on fractional peaks

We identify the source and drain PC separation Lwall from the sidewalls as another factor

that affects the amplitude of fractional peaks relative to that of the integer TMF peaks. In

this section, we consider the evolution of Rnl when the source and drain PCs are situated

at progressively larger distances Lwall from the sidewalls. Using the MC scheme we modeled

Rnl for variable Lwall = 0.0 − 0.02L, keeping fixed w = 0.002L. We use the same earlier

square device, with dimensions L × L in arbitrary units and specular boundaries. Results

are depicted in Fig. 7. For larger Lwall, the fractional peaks are diffused and barely visible

over the background in Rnl. Evidently small Lwall favors robust fractional peaks.

The effects of larger w and Lwall are observed in the experimental results in Fig. 2(b)

(where w ≈ 0.04L, Lwall ≈ 0.01L) and in the computational results in Fig. 4(f) (where

w ≈ 0.02L, Lwall ≈ 0.02L). The fractional peak amplitudes are in these figures smaller than

the integer TMF peak amplitudes (indicated by nc = 1), and the fractional peaks are shifted

to Lsd/dc & n.

E. Appendix E: Quantum-coherent transport model

While fractional peaks appear in simulations based on the semiclassical Boltzmann equa-

tion (Eq. 1) solved in either the FV or MC scheme, we here ask what the effect is of quantum-
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FIG. 7. Rnl vs Lsd/dc simulated using the MC scheme for a square device of size L×L with varying

Lwall, while source and drain widths w = 0.002L are kept constant. Lwall is increased from 0 to

0.02L upwards. Vertical black dashed lines mark the locations of fractional peaks (integer values

of Lsd/dc). The fractional peaks decrease in prominence as Lwall increases.

.

coherent transport and how similar results are to semiclassical transport. The key differences

when compared to the semiclassical model are the presence of quantum interference and a

finite number Nm of transverse modes injected through the PCs. To quantitatively address

the comparison, we solve for ballistic quantum-coherent transport using the KWANT code [64],

which solves the tight-binding model,

H =
∑
i

4t |i〉 〈i| −
∑
i,j

t exp

(
i

2
φ(xi − xj)(yi + yj)

)
|i〉 〈j| (2)

The above is obtained from a finite-difference approximation of the continuous Hamiltonian

H = (p− eA)2 /(2m) on a square lattice with spacing a, and in the Landau gauge with

vector potential A = (−By, 0). Here t = ~2/(2ma2) and we set a = ~ = e = m = 1. The

dependence on B enters through the non-dimensional parameter φ = Ba2/Φ0 (ratio of the

magnetic flux through one cell of the square lattice to the flux quantum Φ0 = ~/e). The
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first term denotes the on-site energy, with a summation over all individual sites, and the

second term a summation over nearest neighboring sites, with xi denoting the x coordinate

of the i site (and similarly for xj, yi, yj). The semiclassical model corresponds to the limit

Nm � 1, whereas quantum-coherent transport has only been solved for in the few mode

limit Nm � 10 (e.g., [53, 65, 66]). To approach the semiclassical limit using a tight-binding

model for the given geometry is challenging since we require L� w and w � λF ; the first

inequality corresponds to the ideal condition needed for the fractional peaks to manifest,

and the second condition signifies Nm � 1. We thus consider a 5000×5000 site model

with infinite leads placed on the bottom edge, each 100 sites wide. We set kF = 0.31π/a,

consistent with the requirement needed for a continuous approximation (kF � π/a) and a

nearly circular Fermi contour. With these parameters, we obtain 32 modes. We compute

the carrier densities ρi at site i, and currents Jij from site j to site i using,

ρi =
∑
α

ψ∗αiψαi (3)

Jij = i
∑
α

(ψ∗αiHijψαj − ψαiHijψnj) (4)

where ψαi denote the modes originating from a chosen lead (either source or drain). The

index α runs over all the modes up to energy EF in the lead and i, j denotes the sites. Hij

is the hopping matrix element from site j to i, defined by H = Hij |i〉 〈i|, where H is the

Hamiltonian given in Eq. 2. The electron-hole symmetry at the Fermi surface allows for

transport both by holes injected through the source PC and by electrons injected through

the drain PC. Therefore, we need to compute scattering states originating from both the

source and drain, and then evaluate the corresponding ρhi and ρei for hole and electron modes

respectively. The net carrier density is then ρi = ρhi −ρei , which is proportional to the voltage

at site i. The calculations for Jij follow similarly.

Figure 8(a) shows the net carrier density (∝ voltage) at every lattice site obtained from

KWANT for the fractional n = Lsd/dc = 5 peak for a 5000×5000 site, with w = 100 sites wide

(corresponding to w = 0.02L), Lwall = 0, Lsd = 0.98L, and with 32 hole modes injected

through the source PC and 32 electron modes injected through the drain PC. In order to

compare the voltages and currents obtained from the tight-binding KWANT model to the semi-

classical model, the tight-binding solutions need to be appropriately averaged. Figure 8(b)

shows the density (as shown in Fig. 8(a)) averaged over ∼ 50 adjacent sites, corresponding
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to the low-energy limit of the lattice solution, which now resembles the semiclassical model.

FIG. 8. Net carrier density (∝ voltage) contour plots obtained using KWANT (quantum-coherent

model) in a 5000×5000 site device with w = 100 sites wide (corresponding to w = 0.02L), Lwall = 0

and Lsd = 0.98L, for the fractional n = Lsd/dc = 5 peak. (a) Net carrier density (∝ voltage)

obtained from KWANT with 32 injected hole and electron modes and by performing a summation

over all modes. (b) Voltage averaged over ∼ 50 adjacent sites and by performing a summation

over the 32 injected hole and electron modes. (c) Voltage averaged over ∼ 50 adjacent sites and

obtained by injecting only single hole and electron modes.

The question arises whether the fractional peaks also appear if just a few modes are

considered or whether they require a summation of several modes. Figure 8(c) shows the

voltage contour plot (averaged over ∼ 50 adjacent sites) when only a single hole mode and

a single electron mode are considered as compared to Fig. 8(b) where 32 modes of each are

considered. In our color convention, the single-mode calculation shows alternating positive

(red) and negative (blue) voltages at the bottom edge of the device, while in the multimode

calculation, the voltage at the bottom edge remains positive (red) throughout. The results

of the multimode calculation are consistent with the observation of the fractional peak -

a hole overdensity everywhere on the bottom edge, while the single-mode calculation does

not indicate this observation. Another noticeable effect in both voltage contour plots (but

more so in the single-mode) is that the cyclotron orbits (red semicircular structures) do not

impinge on the drain PC at exactly the fifth reflection from the boundary, instead appearing

to land somewhat farther. This can be attributed to the effect of finite w, with the number

of reflections compounding the effect further (as observed in [2]). Finally, in the multimode
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calculation the intensity of red semicircular orbits decays as we move farther away from

the source PC. The single-mode calculation, however, fails to capture this important effect.

Figure 9 directly compares the densities and currents between KWANT and BOLT (FV scheme)

at Lsd/dc = 2.5, in the same geometry as shown in Figs. 4(a-d) of the main text. The

qualitative match is evident. Figure 10 compares the contour plots of Rnl vs Lc/Lsd and

Lsd/dc between the semiclassical transport model (using the MC scheme) and the quantum-

coherent model for a square device with specular boundaries, length L, Lwall = 0, w = 0.02L

and Lsd = 0.98L. Fractional peaks are clearly evident in both the semiclassical and quantum-

coherent transport models, with the location of peaks matching closely at lower Lsd/dc

values.

FIG. 9. Comparison of current streamlines and carrier density (proportional to voltage) contour

plots for Lsd/dc = 2.5 in a square device with dimensions L × L, Lwall = 0.02L, w = 0.02L

and Lsd = 0.94L obtained using (a) BOLT (semiclassical transport in FV scheme) and (b) KWANT

(quantum-coherent model with density summed over 32 injected hole and electron modes and

spatially averaged over ∼ 50 adjacent sites).

.

F. Appendix F: ARTS plots at integer Lsd/dc

As illustrated in Figs. 3(f,h) at the condition for appearance of fractional peaks, i.e. at

integer n = Lsd/dc, the ARTS plots show a characteristic horizontal gap around θd ≈ 0.
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FIG. 10. Contour plot of simulated Rnl vs Lc/Lsd and Lsd/dc in a square device with dimensions

L × L, Lwall = 0, w = 0.02L, Lsd = 0.98L and specular device boundaries, obtained using the

(a) semiclassical model (in MC scheme) and (b) quantum-coherent model with density summed

over 32 injected hole and electron modes and spatially averaged over ∼ 50 adjacent sites). Vertical

black dashed lines indicate integer values of Lsd/dc.

.

This gap indicates a lack of trajectories that reach the detector PC. We show in Fig. 11

that this gap blurs with increasing n = Lsd/dc. As n increases, the trajectories traverse

longer path lengths before reaching the source/drain, increasing their likelihood of being

randomized. The randomization of the trajectories leads to an increased probability that

they reach the detector PC, instead of the source/drain PCs. Note that, as mentioned in

the main text, the randomization here is deterministic; each trajectory follows an analytic

solution obtained by a specular reflection off the device boundaries.
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FIG. 11. Comparison of ARTS plots in a L× L device, with w = 0.002L, Lwall = 0, Lsd = 0.998L

and Lc = 0.1L, obtained using the MC scheme for fractional peaks at (a) Lsd/dc = 1 (b) Lsd/dc = 4

and (c) Lsd/dc = 7.

.
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