Project X and its role in ADS

Mark Champion, Fermilab

Workshop on Accelerator-Driven Sub-Critical Systems and Thorium Utilization

September 28, 2010

What is Project X?

Project X Goals

- Construct a 3 GeV continuous-wave superconducting H- linac, capable of delivering 1 mA of average beam current.
 - Supports rare processes and nuclear physics programs
 - Can support ADS development with beams energy <2 GeV
- Construct a 3-8 GeV pulsed linac, utilizing an ILC-style RF system, with total beam power delivered to 8 GeV ovf 300 kW.
 - Required for the neutrino program
 - Establishes a path toward a muon based facility
- Upgrade the Recycler and Main Injector to provide ≥ 2 MW to a neutrino production target at 60-120 GeV.
 - Supports the long baseline neutrino program
- Simultaneous operations of the rare processes and neutrino programs

Initial Configuration-2 aka "Reference Design"

- 3 GeV, 1 mA, CW linac
- Greatly enhanced capabilities in the rare processes program
 - MW class beam power to multiple experiments with variable bunch configurations, simultaneous with neutrino operations
- Self-consistent concept with RCS for 3-8 GeV acceleration
 - Pulsed linac preferred, assuming it can be made to work and is cost effective

Reference Design Provisional Siting

ADS Workshop, M. Champion

Project X

Mission

A neutrino beam for long baseline neutrino oscillation experiments

- 2 MW proton source at 60-120 GeV
- High intensity, low energy protons for kaon and muon based precision experiments
 - <u>Operations simultaneous</u> with the neutrino program
- A path toward a muon source for a possible future Neutrino Factory and/or a Muon Collider
 - Requires ~4 MW at ~5-15 GeV .
- Possible non-HEP missions under consideration
 - Nuclear physics and ADS development

From the high-level Project X Functional Requirement Specification

Functional Requirements

Requirement	Description	Value		
L1	Delivered Beam Energy, maximum	3 GeV		
L2	Delivered Beam Power at 3 GeV	3 MW		
L3	Average Beam Current (averaged over >1 µsec)	1 mA 🗲		
L4	Maximum Beam Current (sustained for <1 µsec)	10 mA		
L5	The 3 GeV linac must be capable of delivering correctly formatted beam to a pulsed linac, for acceleration to 8 GeV			
L6	Charge delivered to pulsed linac	26 mA-msec in < 0.75 sec		
L7	Maximum Bunch Intensity	1.9 x 10 ⁸		
L8	Minimum Bunch Spacing	3.1 nsec (1/325 MHz)		
L9 Bunch Length <50 psec (full-width		<50 psec (full-width half max)		
L10 Bunch Pattern Programmable		Programmable		
L11 RF Duty Factor 100% (CW)		100% (CW)		
L12	RF Frequency	325 MHz and harmonics thereof		
L13 3 GeV Beam Split Three-way		Three-way		
P1 Maximum beam Energy 8 GeV		8 GeV		
P2	The 3-8 GeV pulsed linac must be capable of delivering correctly formatted beam for injection into the recycler (or Main Injector).			
P3	Charge to fill Main Injector/cycle	26 mA-msec in <0.75 sec		
P4	Maximum beam power delivered to 8 GeV	300 kW 🗲		

ADS Workshop, M. Champion

Slide courtesy of Steve Holmes

Page 6

Project X Functional Requirements

M1Delivered Beam Energy, maximum120 GeVM2Delivered Beam Energy, minimum60 GeVM3Beam Power (60-120 GeV)> 2 MWM4Beam ParticlesProtonsM5Beam Intensity1.6 x 10 ¹⁴ protons per pulseM6Beam Pulse Length9.5 µsecM7Bunches per Pulse504M8Bunch Spacing18.8 nsec (1/53.1 MHz)M9Bunch Length<2 nsec (fullwidth half max)				
M2Delivered Beam Energy, minimum60 GeVM3Beam Power (60-120 GeV)> 2 MWM4Beam ParticlesProtonsM5Beam Intensity1.6 x 10 ¹⁴ protons per pulseM6Beam Pulse Length9.5 μsecM7Bunches per Pulse504M8Bunch Spacing18.8 nsec (1/53.1 MHz)M9Bunch Length<2 nsec (fullwidth half max)				
M3Beam Power (60-120 GeV)> 2 MWM4Beam ParticlesProtonsM5Beam Intensity1.6 x 10 ¹⁴ protons per pulseM6Beam Pulse Length9.5 μsecM7Bunches per Pulse504M8Bunch Spacing18.8 nsec (1/53.1 MHz)M9Bunch Length<2 nsec (fullwidth half max)M10Pulse Repetition Rate (120 GeV)1.333 sec				
M4Beam ParticlesProtonsM5Beam Intensity1.6 x 10 ¹⁴ protons per pulseM6Beam Pulse Length9.5 μsecM7Bunches per Pulse504M8Bunch Spacing18.8 nsec (1/53.1 MHz)M9Bunch Length<2 nsec (fullwidth half max)	+			
M5Beam Intensity1.6 x 10 14 protons per pulseM6Beam Pulse Length9.5 µsecM7Bunches per Pulse504M8Bunch Spacing18.8 nsec (1/53.1 MHz)M9Bunch Length<2 nsec (fullwidth half max)				
M6Beam Pulse Length9.5 μsecM7Bunches per Pulse504M8Bunch Spacing18.8 nsec (1/53.1 MHz)M9Bunch Length<2 nsec (fullwidth half max)				
M7Bunches per Pulse504M8Bunch Spacing18.8 nsec (1/53.1 MHz)M9Bunch Length<2 nsec (fullwidth half max)				
M8 Bunch Spacing 18.8 nsec (1/53.1 MHz) M9 Bunch Length <2 nsec (fullwidth half max)				
M9 Bunch Length <2 nsec (fullwidth half max)				
M10 Pulse Repetition Rate (120 GeV) 1.333 sec				
M11 Pulse Repetition Rate (60 GeV) 0.75 sec				
I1 The 3 GeV and neutrino programs must operate simultaneously	-			
I2 Residual Activation from Uncontrolled Beam Loss <20 mrem/hour (average) <100 mrem/hour (peak) @ 1 ft				
I3 Scheduled Maintenance Weeks/Year 4	-			
I4 Operational Reliability 90%	-			
15 Facility Lifetime 40 years				
U1 Provisions should be made to support an upgrade of the CW linac to support an average current of 4 mA.	Provisions should be made to support an upgrade of the CW linac to support an average current of 4 mA.			
U2 Provisions should be made to support an upgrade of the Main Injector to support a delivered beam power of ~4 at 120 GeV.	Provisions should be made to support an upgrade of the Main Injector to support a delivered beam power of ~4 MW at 120 GeV.			
U3 Provisions should be made to deliver CW proton beams as low as 1 GeV	Provisions should be made to deliver CW proton beams as low as 1 GeV			
U4 Provision should be made to support an upgrade to the CW linac such that it can accelerate Protons	Provision should be made to support an upgrade to the CW linac such that it can accelerate Protons			

Concepts of SC CW 3GeV, 1mA Linac

H⁻gun	RFQ	MEBT	SSRo	SSR1	SSR2	β=0.6	β=0.9	ILC
(¢		
RT (~15m)		325 MHz			650	MHz	1.3 GHz	
		2.5-160 MeV			0.16-2	2 GeV	2-3 GeV	

Section	Freq, MHz	Energy(MeV)	Cav/mag/CM	Туре	
SSRo (β_{G} =0.11)	325	2.5-10	26 /26/1	SSR, solenoid	
SSR1 (β_{G} =0.22)	325	10-32	18 /18/ 2	SSR, solenoid	
SSR2 (β_{G} =0.42)	325	32-160	44 /24/ 4	SSR, solenoid	
LB 650 (β_{G} =0.61)	650	160-520	42 /21/ 7	5-cell elliptical, doublet	
HB 650 (β _G =0.9)	650	520-2000	96 / 12/ 12	5-cell elliptical, doublet	
ILC 1.3 (β _G =1.0)	1300	2000-3000	64 / 8/ 8	9-cell elliptical, quad	
All SRF cavities to operate at 2K			290 cavities plu	s ~250 for pulsed Linac	

ADS Workshop, M. Champion

Slide courtesy of Nikolay Solyak

325 MHz spoke cavities family

SSRo -design SSR1 – prototyping, testing

SSR₂ -design

Parameters of the single-spoke cavities

cavity type	β_{G}	Freq MHz	U _{acc, max} MeV	E _{max} MV/m	B _{max} mT	R/Q,	G, Q	*Q _{0,2K}	P _{max,2K} W
SSRo	β=0.114	325	0.6	32	39	108	50	6.5	0.5
SSR1	β=0.215	325	1.47	28	43	242	84	11.0	0.8
SSR ₂	β=0.42	325	3.34	32	60	292	109	13.0	2.9

* We assume surface resistance ~6 nOhm at 2 K and 30% of medium-field Q-slope for ~60 mT of the magnetic surface field.

ADS Workshop, M. Champion

Slide courtesy of Nikolay Solyak

RF parameters of the 650 MHz and ILC cavities

	Ø400.6	-U.M.M.M.M.M.M.M.M.M.M.
	1187 mm	

ILC

High energy SC Linac (160 – 3000 MeV)

Parameter	LE650	HE650	ILC
Beta_G	0.61	0.9	1
R/Q, Ohm	378	638	1036
G-factor, Ohm	191	255	270
Max. gain per cavity, MeV(on crest)	11.7	19.3	17.2
Gradient, MeV/m	16.6	18.7	16.9
Max. Surface electric field, MV/m	37.5	37.3	34
E_{pk}/E_{acc}	2.26	2	2
Max surf magnetic field, mT	70	70	72
B_{pk}/E_{acc}	4.21	3.75	4.26
$\dot{Q}_{0,2K} \times 10^{10}$	1.5	2.0	1.5
$P_{2K}[W]$ max	24	29	20

ADS Workshop, M. Champion

Slide courtesy of Nikolay Solyak

Page 10

Project X

Design Status for Cavities & Cryomodules

- EM designs for all cavities
 - HOM couplers an open issue (needed?)
- Engineering design for SSR-1 cavities
 - 2 prototypes have been tested in vertical dewar
 - 1 of 2 has been dressed and tested in horizontal test cryostat
 - 2 additional cavities in fabrication at IUAC (Delhi)
 - 10 additional cavities in fabrication by industry
 - First pair due end of calendar year
- Six beta 0.9 single-cell 650 MHz cavities in procurement
- Beta 0.6 single-cell cavities to be prototyped at JLab
- 88 ILC cavities total (44 received / 44 on order)
 - ILC R&D program, but funded through SRF and ARRA
- Cryomodule design work in early stages

Working Timeline

• FY2010

- Complete Reference Design Report and preliminary cost estimate
- Revise RD&D plan and initiate work
- FY2011
 - CD-0
 - Initiate work on Conceptual Design Report
 - Initiate permitting documentation
- FY2012
 - CD-1
- FY2013
 - CD-2/3a
- FY2014
 - CD-3: Initiate Construction
- ~FY2015~2019
 - Construct

Collaboration Status

춖

Collaboration MOU for R&D phase:

ANL	ORNL/SNS
BNL	MSU
Cornell	TJNAF
Fermilab	SLAC
LBNL	ILC/ART

 MOU/Addendum on development of high intensity proton sources in place between Fermilab and Indian institutes:

> BARC/Mumbai IUAC/Delhi RRCAT/Indore

VECC/Kolkota

ADS Workshop, M. Champion

Next collaboration meeting planned for April 11-13, 2011, at ORNL/SNS

Collaboration Meeting: Working Groups

- RF Systems
- Cavities & CMs
- Main Injector/Recycler
- Instrumentation/Controls
- Cryogenics
- Linac Integration
- Pulsed Linac/Injection
- Linac Front End

- R. Pasquinelli/B. Chase
- M. Champion/B. Rimmer
- I. Kourbanis/R. Ryne
- M. Wendt/C. Briegel/W. Blokland
- A. Klebaner/B. Petersen
- S. Yakovlev/J. Kerby/J. Galambos
- S. Nagaitsev/D. Johnson/D. Raparia
- R. Webber/D. Li

Agenda: http://indico.fnal.gov/conferenceDisplay.py?confld=3542

Role of Project X in ADS

- A demonstration facility that couples a subcritical assembly to a high-power accelerator requires 1-2 MW beam power in the GeV range (c.f. Henderson talk)
- The 3 GeV CW Linac has many of the elements of a prototypical ADS Linac
 - 1 mA average current upgradeable to 4 mA
 - Beam power ranging from 3 to 12 MW
 - Energy in the 1-2 GeV range is considered optimal, so provision will be retained for delivering a beam energy less than 3 GeV
- Primary technical issue is machine reliability
 - ADS Linacs have very stringent trip rate requirements (c.f. Henderson talk)
- The Project X CW Linac is well suited to power a demonstration facility with focus on:
 - High reliability component development, fault tolerant linac and rapid fault recovery development
 - Target system and subcritical assembly technology development and demonstration
 - Demonstration of transmutation technologies and support for fuel studies
 - Materials irradiation
- Indian colleagues plan to utilize Project X technology in their ADS program