GEM STAR Green Energy-Multiplier

Subcritical-technology Thermal-spectrum Accelerator-driven Recycling-reactor

(my version of acronym)

Transforming the Nuclear Landscape

Bruce Vogelaar (Virginia Tech) September 27, 2010 ADNA and Virginia GEM*STAR Consortium

The Urgency

Population Growth:

2020 → 8 billion 2100 → 10-12 billion

Energy Availability – vs – poverty:

Sweden – 15,000 kWh_e/(person-yr) Tanzania – 100 kWh_e / (person-yr) $\frac{1}{2}$ live in poverty; 1/5th under nourished

Energy Source:

1.6 billion – no electricity

2.4 billion – traditional biomass

Advanced Society Energy Consumption:

0.9 GJ / day / person 10.4 kW /person 32 kg coal / day / person 100 kg CO₂ / day / person

Global Warming is happening *now*

These are shared challenges – either directly or indirectly

nuclear energy already accounts for 17% of global electricity production

Fuel for electricity generation (percent)

Nuclear Issues Are (and will remain) Unavoidable

"At least 40 developing countries have recently approached U.N. officials here to signal interest in starting nuclear power programs

... At least half a dozen countries are specifically planning to conduct enrichment or reprocessing of nuclear fuel..."

Joby Warrick, Washington Post, May 12, 2008

GEN * STAR

Classic Associations with Nuclear Energy

no CO₂

6

- low-cost electricity (current fleet)
- engineered safety
- IAEA oversight

Incremental improvements will not break all these associations – be they real or imagined,

- each is a proven show
- stopper

- weapons
 - enrichment
 - reprocessing
- waste
- costly political ramifications
- truly catastrophic failure scenarios
- NIMBY

Invent the Future

Invent Solutions to the Realities of Today

FEN

Can **accelerators** really make the difference?

NOT if incremental, or pursued in an unmotivated context.

ADNA: "re-frame the question"

"What would an optimized accelerator-based nuclear-energy program look like?"

graphically...

the advances and understanding which make this possible *now*...

...despite the real challenges of currently being 'outside' traditional programs

STAR

GEM * STAR

Accelerators

Study of a 10-MW Continuous Spallation Neutron Source (BNL, 2003)

	SNS	AGS	ACNS
Kinetic Energy, GeV	1.0	1.2	1.25
Ave. Power, MW	1.0	0.045	10
Duty Factor, %	6.0	0.18	100
Repetition Rate, Hz	60	2.5	
Pulse Length, ms	1.0	0.72	
Peak Power, MW	16.7	25	10
Ion Source Current, mA	35	35	10
Ave. Beam Current, mA	1.0	0.035	8
Peak Beam Current, mA	26	21	8
Protons / Bunch, x 10 ⁸	4.3	8.7	1.43
RF, GHz	0.805	0.805-1,61	0.7 - 1,4
Coupler RF Power, MW	170-350	260 - 400	80 - 155
Length, m	158	120	163
Inj. Energy, MeV	185.6	200	200
Cryo. Power (2.1°K), kW	0.5	0.15	5.3
Ave. AC Power, MW	3.1	0.28	23
Ave. Gradient, MV/m	3.1 - 6.5	5.3-10.0	3.3 - 8.7
Efficiency, %	26 - 30	9 - 16	35 - 40
Capital Cost, M\$	110	97	85
Operation Cost, M\$ / yr	2.0	0.18	15.2

Comparison of Super-Conducting Linacs and operation power costs.

ADS Technology Readiness Assessment

		GEM*STAR Demonstration	Industrial-Scale Transmutation	Power Generation
Front-End System	Performance			
	Reliability			
Accelerating System	RF Structure Development and Performance			
	Linac Cost Optimization			
	Reliability			
RF Plant	Performance			
	Cost Optimization			
	Reliability			
Beam Delivery	Performance			
Target Systems	Performance			
	Reliability			
Instrumentation and Control	Performance			
Beam Dynamics	Emittance/halo growth/beamloss			
	Lattice design			
Reliability	Rapid SCL Fault Recovery			
	System Reliability Engineering Analysis			

Green: "ready", Yellow: "may be ready, but demonstration or further analysis is required", Red: "more development is required".

Solid Fuel Issues

- non-uniform fuel consumption
 - fuel repositioning to optimize burn-up fraction
- fission-product build-up
 - significant inventory of radioactive gasses

typical fission distribution for driven systems

 difficult and expensive process to 'qualify' new fuels

STAR

Molten Salt Eutectic Fuel

STAR

GBN *

Liquid fuel enables operation with constant and uniform isotope fractions including fission products

consider isotope N₁ present in molten-salt feed:

 $\begin{array}{ll} & feed & absorption & overflow \\ dN_1/dt &= F(v/V) - N_1 \phi \ \sigma_{a1} - N_1(v/V) = 0 \\ & \text{define neutron fluence: } \mathcal{F} = \phi(V/v); \text{ then in equilibrium} \\ N_1 &= F \ / \ [1 + \mathcal{F} \ \sigma_{a1}] \\ & \text{and its } n_{\text{capture}} \text{ and } \beta_{\text{decay}} \text{ daughters are given by} \\ N_i &= N_1 \ \Pi_{j=2,i} \left\{ \mathcal{F} \ \sigma_{c(j-1)} \ / \ [1 + \mathcal{F} \ \sigma_{aj}] \right\} \quad i \geq 2 \end{array}$

do this for all actinides present in molten-salt feed and add together the results

note: feed rate is determined by power extracted

extracts many times more fission energy, without additional long-lived actinides

major reduction and deferral of waste

Thermal Spectrum 0.01 – 0.2 eV

highest tolerance for fission products:

- neutron s-wave strength low for fission products
- σ_f(²³⁹Pu)/ σ_c(f.p.)~ 100 (versus ~ 10 at 50 keV)
- resonance spacing large compared to width of neutron spectrum
- 151 Sm (transmuted rapidly to low σ_c nuclei); 135 Xe (continuously removed as a gas)
- ⇒ more than compensates for slower fission of heavy actinides

STAR

New Graphite Results (ADNA)

Diffusion/Absorption @ Duke

Diffraction @ LANL

"Measurements of Thermal Neutron Diffraction and Inelastic Scattering in Reactor-Grade Graphite" Nuclear Science and Engineering Vol. 159 · No. 2 · June 2008 "Reducing Parasitic Thermal Neutron Absorption in Graphite Reactors by 30%" Nuclear Science and Engineering Vol. 161, No. 1, January 2009

Discovered *and measured* a commercial graphite source with:

- 24% increase in room temperature thermal diffusion length ('HP' manufacturing process creates distorted crystals reducing coherent scattering)
- boron contamination less than 2 parts in 10⁷

 \Rightarrow significant reduction in parasitic neutron absorption

Typical GEM * STAR System

Protons -vs- Electrons

 $\frac{P_{beam}}{P_{input}} \cdot \frac{n}{E(MeV)} \cdot \frac{fission}{n} \cdot \frac{1}{1-k_s} \cdot \frac{E(MeV)}{fission} \cdot \frac{P_{electric}}{P_{thermal}} \approx M$ protons (@600 MeV): $0.5 \cdot \frac{1}{30 MeV} \cdot \frac{1}{2.7} \cdot \frac{1}{1-0.98} \cdot 200 MeV \cdot 0.44 = 27$ electrons (@50 MeV): $0.5 \cdot \frac{1}{3000 MeV} \cdot \frac{1}{2.7} \cdot \frac{1}{1-0.98} \cdot 200 MeV \cdot 0.44 = 0.27$ 20 n per 1 p 1n per 60 e $0.5 \cdot \frac{1}{3000 MeV} \cdot \frac{1}{2.7} \cdot \frac{1}{1 - 0.9996} \cdot 200 MeV \cdot 0.44 = 27$ proton accelerator ~ $\frac{1}{4}$ capital cost

GEM * STAR

Conceptual Design

Unique Target Considerations

Existing Oak Ridge SNS Molten Hg target

- heat removal; diffuse/ multiple beam targets
- neutron absorption
- local core reactivity
- primary n production
- thermal n escape, fast n fission
- maintenance
- spent target disposal
 Uranium seems ideal...

Fuel: Natural Uranium

GEM * STAR

Next: 60 (120) MW_e Demonstration Facility

a potential site at Los Alamos

a potential site in Virginia

GEM ***** STAR System

- intrinsic safety: no critical mass ever present
- no high-pressure containment vessel
- thermal neutrons: better tolerance to fission products
- exceptional neutron economy: allows deeper burning
- higher thermal to electric conversion efficiency

no enrichment; no reprocessing; can burn multiple fuels *including* LWR spent fuel

current prices for electricity

(estimated by Black and Veatch, Overland Park, Kansas)

	cents/kwh			
Coal without CO ₂ capture	7.8			
Natural gas at high efficiency	10.6			
Old nuclear	"3.5"			
New nuclear	10.8			
Wind in stand alone	9.9			
Wind with the necessary base line back-up) 12.1			
Solar source for steam-driven electricity	21.0			
Solar voltaic cells; higher than solar steam electricity				

*NYT, Sunday (3/29/09) by Matthew Wald

GEM

STAR

GEM[∗]STAR

will transform the nuclear policy landscape:

- not a 'niche', but rather base-line capable (green) energy source
- no enrichment necessary
- burns Light-Water-Reactor spent fuel directly (including fission products and actinides)
- burns multiple-fuels (including Th)
- low-cost electricity for consumer
- significant international and non-proliferation implications