Piano Repair & Tuning For Physicists & Engineers using your Laptop, Microphone, and Hammer by Bruce Vogelaar, Hans Robinson, Tatsu Takeuchi Virginia Tech at 3:00 - 4:30 pm Hahn Hall North Rm 130 April 20, 2019

<u>24 tone fun</u> <u>Janko Keyboard</u> Fluid piano

1

A pure sound pitch is a pressure wave travelling in air at speed v, with frequency f, and wavelength λ .

isvr

 $f\lambda = v$

note: any given gas molecule just goes back and forth.

String instruments vibrate at specific frequencies:

A piano string is fixed at its two ends, and can vibrate in several harmonic modes.

$$L=n\frac{\lambda}{2};$$

$$f_n = \frac{v}{\lambda} = n\frac{v}{2L} = nf_0$$

[v = speed of wave on string]

$$\omega_n = 2\pi f_n$$

Converting string motion into sound is difficult:

- sound board
- resonant cavity
- electric pickups to amp to speaker

Add sounds together:

5

Add sounds together:

frequency content determines 'timbre'

Invert: given the 'sum', what were the components? Fast Fourier Analysis as in FFTuner @ www.phys.vt.edu/~vogelaar please read the Help file which covers everything here in more detail https://www1.phys.vt.edu/~kimballton/home/pub/piano/tuner-app/FFTuning.htm

C2 struck with key; log scale makes everything easier to see

You might want a powered base microphone for the low frequencies.

Why some notes sound 'harmonious' together

or rather, which notes don't sound terrible together.... their harmonics are either matched or well separated (In practice, you can hardly ever avoid harmonics of a fundamental.)

pure with harmonics $f_2 = 1.55 f_1$ $f_2 = 1.55 f_1$ $f_2 = 1.55 f_1$

Origins of the Just Temperament

Piano Tuning

9

"Circle of 5th s"

Going up by 5ths 12 times brings you *very* near the same note (but 7 octaves up)

this suggests 12 notes per octave

Equal temper: space by $\sqrt[12]{2}$

'cents' between two notes: 1200 * $log_2(f_2/f_1)$

Octave = 1200 cents ("Wolf " fifth is off by 23 cents.)

"Wolf" fifth

log₂(f) shifted down into same octave

Piano Tuning

Multiplier of lower fundamental frequency

Guitar

A guitar string is fixed at its two ends, and can vibrate in several harmonic modes.

$$L = n \frac{\lambda}{2};$$

$$f_n = \frac{v}{\lambda} = n\frac{v}{2L} = nf_0$$

[v = speed of wave on string]

$$\omega_n = 2\pi f_n$$

Spacing between frets:

Piano Tuning

13

$$\frac{f_{n+1}}{f_n} = \frac{L_n}{L_n - x} = \sqrt[12]{2}$$
$$x = (1 - 2^{-1/12})L_n = 0.05613L_n$$

Pressing a string between frets raises the tension in the string leading to the idea of harmonic tuning:

Play harmonics by lightly touching strings when strumming at 1/2, 1/3, 1/4 length, etc.

Drums

Drums

Modes of an ideal drumhead in a vacuum. This is NOT what you'll see on a real drum.

Drums

					L M
0 Linear	Hold	Ran	ge: 500 Hz	Mic	OFF Mono 500
FFTuning by Bruce Voge	laar + Laura & Fra	ncois Herlant			<u>Help</u>
1226.8¢ 346cm	Note	Octave	Harmonio	c Inh: Calc Z	lero Reset Freq
L: Center Play	◄ G ►	2	I	▶ 0	▶ 99.2 ▶
R: Center Play	┥ G 🕨	◀ 3 ▶	• 1		201.6
Auto Tuning Seq (left	t) R=f(L)	~ R=1.5R	A4: tmp ~	restore A4 A4(L) Drum Reset
	Δ/2	2k 2Δ ►	mute	Volume:	- Exit

Piano Tuning

16

First three are (0,1), (1,1), and (2,1). Can confirm this by dampening out other modes (like playing harmonics on a guitar) Back to pianos: what an 'aural' piano tuner does...

for *equal* temperament:

tune so that desired harmonics are at the same frequency;

then, set them the required amount off by counting 'beats'.

	Equal temperament beatings (all figures in Hz)												
261.626	277.183	2 93.66 5	311.127	329.628	349.228	3 <mark>69.99</mark> 4	391.99 5	415.305	440.000	466.164	493.883	523.251	
0.00000			14.1185	20.7648	1.18243		1.77165	16.4810	23.7444			С	
		13.3261	19.5994	1.11607		1.67221	15.5560	22.4117			В		
	12.5781	18.4993	1.05343		1.57836	14.6829	21.1538			Βþ			
11.8722	17.4610	.994304		1.48977	13.8588	19.9665			Α				
16 4810	.938498		1.40616	13.0810	18.8459			Αb					
.885824	$\mathbf{)}$	1.32724	12.3468	17.7882			G				Fundamental		
	1	11.6539	16.7898			F♯					Oct	ave	
1.18243	10.9998	15.8475			F						Major	r sixth	
10.3824	14.9580			Е							Minor sixth		
14.1185			ЕРе	rfect	Fifth:	from	C.s	et G	abov	e it	Perfec	t fifth	
		D	SUC	h tha	t an (octav	e and	l a fif	th ah		Perfect	fourth	
	C♯		300			Joiav					Major	r third	
С			th	есу	ou no	ear a	0.89	HZ	peatir	ig 🖉	Mino	r third	

Interval	Approximate ratio	Beating above the lower pitch	Tempering	
Unison	1:1	Unison	Exact	
Octave	2:1	Octave	Exact	
Major sixth	5:3	Two octaves and major third	Wide	l was hopeless.
Minor sixth	8:5	Three octaves	Narrow	and even wrete a
Perfect fifth	3:2	Octave and fifth	Slightly narrow	and even wrote a
Perfect fourth	4:3	Two octaves	Slightly wide	synthesizer to try
Major third	5:4	Two octaves and major third	Wide	and train mysen
Minor third	6:5	Two octaves and fifth	Narrow	
				but I still couldn't

'hear' it...

These beat frequencies are for the central octave.

Piano Tuning

Perfect Fifth: the 2 cent beat frequency is easy to hear, when isolated.

Is it hopeless?

not with a little help from math and a laptop...

we (non-musicians) can use a spectrum analyzer...

With a (free) "Fourier" spectrum analyzer we can set the pitches exactly!

True Equal Temperament Frequencies

	0	1	2	3	4	5	6	7	8
С		32.70	65.41	130.81	261.63	523.25	1046.50	2093.00	4186.01
C#		34.65	69.30	138.59	277.18	554.37	1108.73	2217.46	
D		36.71	73.42	146.83	293.66	587.33	1174.66	2349.32	
D#		38.89	77.78	155.56	311.13	622.25	1244.51	2489.02	
E		41.20	82.41	164.81	329.63	659.26	1318.51	2637.02	
F		43.65	87.31	174.61	349.23	698.46	1396.91	2793.83	
F#		46.25	92.50	185.00	369.99	739.99	1479.98	2959.96	
G		49.00	98.00	196.00	392.00	783.99	1567.98	3135.96	
G#		51.91	103.83	207.65	415.30	830.61	1661.22	3322.44	
А	27.50	55.00	110.00	220.00	440.00	880.00	1760.00	3520.00	
A#	29.14	58.27	116.54	233.08	466.16	932.33	1864.66	3729.31	
В	30.87	61.74	123.47	246.94	493.88	987.77	1975.53	3951.07	

But first – a critical note about 'real' strings (where 'art' can't be avoided)

• strings have 'stiffness'

- bass strings are wound to reduce this, but not all the way to their ends
- treble strings are very short and 'stiff'
- thus harmonics are not true multiples of fundamentals

 f_n is increased by a factor of $\sqrt{1 + \beta n^2}$

A4 (440) inharmonicity

Ideal strings $f_0 = 440(2^n); n = -4 \cdots 2$

Only the nearby octaves

With 0.001 inharmonicity

7								0.0
6							0.0	0.9
5						0.0	0.9	7.8
4					0.0	0.9	7.8	41.4
3				0.0	0.9	7.8	41.4	
2			0.0	0.9	7.8	41.4		
1		0.0	0.9	7.8	41.4			
0	0.0	0.9	7.8	41.4				

How many cents from perfect.

Need to "Stretch" the tuning. Can not match all harmonics, must compromise \rightarrow 'art'

the FFTuner approach

Pluck/strike one string at a time

Tune octaves 3, 4, and 5 to their exact frequencies (setting the 'temper' and eliminating 'stretch' for this region as a reasonable first estimate).

For octaves 0, 1, and 2, tune their 8th, 4th, and 2nd harmonics respectively to match the same note in octave 3.

For octaves 6 and 7, tune their fundamentals to match the 2nd and 4th harmonics respectively from octave 5.

FFTuner pre-populates these choices to expedite the process. See Help file for lots of explanation.

tools of the trade...

! but some keys don't work !

pianos were *designed* to be repairable - likely need to remove 'action'

(if you break a string tuning it, you'll need to remove the 'action' anyway)

(remember to number the keys before removing them and mark which keys hit which strings)

"Regulation"

Fixing keys, and making mechanical adjustments so they work optimally, and 'feel' uniform.

Piano Tuning

Piano Tuning

"Voicing" the hammers

NOT for the novice (you can easily ruin a set of hammers)

Let's now do it for real...

pin turning unisons ('true' or not?) tune using FFTuner put it back together

US Annual Piano Sales

getting harder to find...