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Abstract 

We review the application of the renormalisation group to many-body problems, 
with particular emphasis on the scaling behaviour which may arise. An introductory 
section discusses the difficulties of calculating the many-body effects near a magnetic 
phase transition, and shows by a simple example how the renormalisation group 
may be used to predict scaling behaviour. A general discussion of scaling and uni- 
versality follows, with a review of techniques for calculation in lattice models, and 
an outline of the approaches in field theory. The range of applications of these 
techniques is discussed. The  introductory sections are designed for the non-expert. 
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1. Introduction 

1.1, Sculing in many-body problems 

Scaling, or scale invariance, is not a typical phenomenon of physics. For most 
aspects of all physical systems, adequate theoretical understanding may be attained 
by concentrating on only a small range of length (and/or time, mass, etc) scales 
spread about some characteristic point. For example, to comprehend Galileo’s 
experiment at the Tower of Pisa, it was not necessary to have an understanding 
of the motion of the molecules which make up the balls. Similarly, excited states 
of the nuclei need not be considered in order to study adequately the structure 
of a molecule, and planetary motions are ignored in the analysis of the evolution 
of galaxies, and so on. These examples share one common feature: the picture, to 
be described theoretically by, say, an effective Hamiltonian, changes as the in- 
vestigator changes his attention from onc characteristic length to another; these 
phenomena are scale-dependent. 

However, it appears now that there are many phenomena exhibiting scale invariance 
and for which the best physical description is in terms of a picture (Hamiltonian) 
which remains the same under a change of length scale. Major examples are (i) in 
statistical physics, the critical point of a system undergoing a (second-order) phase 
transition and analogous phenomena and (ii) in elementary particle physics, the 
limit of collision energy very much larger than typical hadron masses. In  this review 
we shall concentrate on the former, where enormous progress has been madc since 
the previous review in Reports on Progress in Physics (Fisher 1967a). 

In  scale-invariant systems, one common feature poses as the major obstacle for 
ordinary analysis : the essential participation of degrees of freedom associated with all 
length scales. For example, in a statistical system at criticality, correlated fluctuations 
of all sizes are equally important. Ordinary analysis fails in these situations since it 
singles out only a few ‘important’ degrees of freedom. Such methods are perfectly 
adequate in, say, the first example given: two degrees of freedom (vertical position 
and velocity of the centre of mass) enter essentially while the 1 0 2 0  or so degrees of 
freedom associated with molecular motion can be safely ignored. 

Until recently, progress on a description of criticality has come from mathe- 
matical or computational dexterity----exact results for specific models and high/low 
temperature series techniques. The  renormalisation group (RG) analysis, by contrast, 
attempts to provide an understanding of the physics by actually taking into account 
these many-body effects, if only approximately. The  central idea is a step-by-step 
method. In  each step, typically, a fraction of the many degrees of freedom is 
eliminated while the effects of such a decimation are translated into an effective 
Hamiltonian for the remaining degrees of freedom. Unlike ordinary analysis, which 
generally ignores the effects of the degrees of freedom associated with all scales 
except a chosen few, this method incorporates some of the eflects into the ‘new’ 
Hamiltonian at each step. This action of generating a new Hamiltonian, a?’(s’), 
for the new degrees of freedom (s’) from the old 2 ( s )  is called a renormalisation 
group transformation. 

The  sequence of effective Hamiltonians obtained after a large number of such 
steps may in principle exhibit an enormoils range of behaviours. Perhaps the simplest 
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possibility, and the centre of attention in this review, is convergence towards a fixed 
point &'*. When &'* is approached there is no longer a change in the picture (8") 
under a RG transformation. Since a typical RG transformation involves a change 
of scale, in that the density of degrees of freedom is changed, scale invariance and 
the existence of .%* are intimately related. 

The  RG was introduced first in the context of quantum electrodynamics by 
Stueckelberg and Petermann (1953) and by Gell-illann and Low (1954) to study 
the high-energy behaviour of interacting electrons and photons. This formal de- 
velopment lay dormant for many years. The  above picture of thinning of degrees 
of freedom was applied by Kadanoff (1966) to predict qualitatively scaling behaviour 
at second-order phase transitions. The  relevance for phase transitions of the earlier 
quantum field theory methods was realised (Di Castro and Jona-Lasinio 1969) 
and was implemented quantitatively by Larkin and Khmel'nitskii (1969) for phase 
transitions in uniaxial ferroelectrics. (These have the special property that the 
attractive fixed point corresponds to zero interactions.) The  application of the HG 
to the Kondo problem was instigated by Anderson et a1 (1970). In  a series of papers, 
Wilson (1971a, b) and Wilson and Fisher (1972) showed how Kadanoff's ideas could 
be implemented using field theory techniques and provided a quantitative tool for 
calculations of critical behaviour in many systems. In  particular the discovery of 
the E expansion (Wilson and Fisher 1972) opened the way for the use of the highly 
developed techniques of renormalised perturbation theory (BrCzin et a1 1973~1, b, c, d, 
Mitter 1973, Schroer 1973). A quantitative realisation of Kadanoff's ideas in Ising- 
like lattice models was given by Niemeijer and van Leeuwen (1973, 1974). The  
spin-4 Kondo problem was solved (Wilson 1974b, 1975). References to results in 
elementary particle physics (which are on the whole less well established experi- 
mentally) will be given later. Enormous numbers of applications of these develop- 
ments have been made in the last five years, 

1.2. Outline 
An illustration of RG methods is presented in $2. A brief survey is given of the 

main features of critical phenomena. We show why ordinary analysis is inadequate 
and how RG methods can succeed. A simple example is worked out in some detail 
to provide a taste of the RG method. 

In  $3, we study the stability properties of an %* and present the important 
links between these properties and physically measurable quantities : equation of 
state, correlations, etc. This section deals with the question: what can be calculated? 

How to do calculations is dealt with in 954 and 5. We review real-space RG 
methods in Ising-like lattice models in 94. To give an account of field theory methods 
from first principles is beyond the scope of this review. We give only a skeleton 
review of them in $5 and indicate a number of comprehensive references. 

The  sixth section is a brief survey of the immense field of applications. It is 
obviously impossible to give details-our aim is to review what has been done and 
to direct the reader to the main references on specific systems. 

A newcomer to this subject should find most of the early sections ($$2-4) readable. 
Section 3.2 is more technical and to gain facility with the techniques in $5 requires 
investment in field theory methods, particularly the Feynman graph expansion. 
We hope that each subsection in $6 can be read independently of the other sub- 
sections. 
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2. The renormalisation group-a simple example 

In  this section we are going to illustrate by a very simple calculation the use 
of the renormalisation group (RG) in a magnetic phase transition. We shall discuss 
the physics of the problem, write down a theoretical model, describe a simple way 
of implementing the RG idea in the model and show how a description of the physics 
is obtained in the RG formalism. We stress that none of these topics is covered in 
an exhaustive fashion in this section; our aim is to give as simple an illustration as 
possible of the RG in action. References will be given in the summary at the end of 
the section. 

2.1. Magnetic phase transition 

The magnetism that we see in materials such as iron and nickel is understood to 
result from the cooperative alignment of the microscopic magnetic moments, or 
spins, of electrons in the material. The forces which make the spins align have their 
origin in the exchange interaction in quantum mechanics. The  strength of these 
aligning forces determines the temperature up to which the material has permanent 
magnetisation. A typical graph of magnetisation M as a function of temperature T 
is shown in figure 1. In  the absence of an applied magnetic field the magnetisation 
decreases smoothly and vanishes at the Curie or critical temperature Tc. This 
disappearance of magnetisation is understood to arise not from the disappearance 
of the microscopic magnetic moments of the electrons but from the reduction of 
the amount of alignment of their spins. If we lower the temperature through the 
Curie temperature, the alignment reappears. (Strictly speaking, the alignment 
occurs spontaneously only within domains, formed to minimise the dipole intcr- 
actions between the spins. An external magnetic field H must be applied to align 
the domains and 'magnetise' the material. The  curves in figure 1 should be regarded 
as behaviour in large single domains.) 

We say that the system goes through a phase transition at the critical point 
( H  = 0, T = T,) changing from being paramagnetic ( T  > T,) to ferromagnetic 
(2' c Tc).  Technically this is classified as a second-order phase transition, charac- 
terised by the absence of latent heat and the continuous growth from zero of an 
order parameter, the spontaneous magnetisation in this case. Not all magnetic phase 

Figure 1. Dependence of magnetisation on temperature in an ideal ferromagnet. 
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transitions are of this type but many other examples of this kind of transition will 
be discussed in $6. 

The theoretical study of the critical behaviour, where H is small and II’ is closc 
to T,, has aroused enormous interest for many years, both because of the nature 
of the observed macroscopic phenomena and because of the microscopic picture 
which has been developed to understand the onset of the phase transition as the 
temperature is lowered to T,. 

In  order to appreciate this latter point, let us consider a paramagnetic material 
at  very high temperatures. In  this region, the spins of the electrons act essentially 
indrpendently of one another, just as do the molecules in a gas at sufficiently high 
temperature and low density. As the temperature is lowered, the spins begin to 
respond more to the forces aligning them with their neighbours in thc solid. There- 
fore a correlation develops in which neighbouring spins tend on the average to be 
parallel to one another. As the temperature is lowered further, the range of this 
correlation, called the correlation length 6 ,  becomes larger. In  the absence of an 
applied field H there is not yet any magnetisation of course, because these aligning 
efTects still average out to zero over the solid; only over distances less than about 8 
does the material appear inhomogeneous, because of these fluctuations. The crucial 
concept is that as T is lowered to T ,  (with H -- 0) in an idealised system, the correlation 
length 6 tends to infinity, marking the onset of the ‘infinite’-range correlation of 
spontaneous magnetisation. The  principal idealisation is that the material should 
be infinitely large, with all domain effects negligible; ‘infinitely large’ is realised 
rather well in practice in units of atomic spacing. 

Those more familiar with the liquid -gas system will appreciate that the pheno- 
menon of critical opalescence signals dramatically the appearance of large correlated 
fluctuations close to the critical point of the system. 

The  above remarks summarise very briefly the difficulty of obtaining a theoretical 
description of such critical behaviour; each spin interacts directly only with the 
spins in its neighbourhood and the phase transition occurs through the cooperative 
effect of the interactions among arbitrarily large numbers of the spins. This is 
typical of the kind of many-body problem which the renormalisation group is 
specifically designed to tackle. 

There is now an established (idealised, of course) format which is used to display 
the results of experiments on second-order phase transitions. A more detailed dis- 
cussion of the physical phenomena is given in 93. Here we mention only two primary 
€eatures. 

( ~ j  Critical exponents. The curve of spontaneous magnetisation in figure 1 can De 
described close to l‘, by a relationship of the form 

nilK(T,- T)fi ( H  1 0 ,  T < Tc). (2.1) 
/3 is an example of a critical exponent. A typical value is about 0.37. Many other 
exponents can be defined describing tlie behaviour of other quantities close to the 
critical point. For example, the exponent v describes how the correlation length 5 
goes to infinity as T is lowered to T ,  (with H = O ) :  

( ~ ( 2 ’ - -  ?‘e)-’ (T> T,, H = 0 ) .  (2.2) 
We shall illustrw later in this section how this behaviour is predicted and v is 
calculated using the renormalisation group. 

’The relations (2.1) and (2.2) exhibit scaling behaviour, in the sense that e.g. 
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equation (2.1) is invariant under the scale changes ( T  - T,)-+h( I' -- Yc), I14+h@M. 
This scaling property is displayed more dramatically in the equation of state, for 
example, which involves a function of two variables in general, e.g. H = H ( M ,  T ) .  
It is found that in the critical region the equation of state can be expressed as a 
function of one variable, in the form 

W/Mb = h[( T - Tc)/M 1'q. 

This behaviour will be discussed in more detail in 93. 
(b )  Universality. It is clear that some of the parameters describing the phase 

transition do depend on the detailed nature of the forces between the electron spins; 
the critical temperature is higher the stronger the aligning forces. However, it is 
remarkable that many of the properties near a phase transition point are universal. 
Critical exponents such as j3 and v (as we11 as the function h up to choice of units) 
appear to depend only on qualitative features of the system which are easily charac- 
terisable, such as d, the number of spatial dimensions, the underlying symmetry 
and the range of interactions. For example, all uniaxial three-dimensional magricts 
with predominantly short-range interactions have the same values for critical ex- 
ponents. There is even evidence that the critical behaviour in liquid-gas systems is 
also universal in this sense, with the same critical exponents as in these uniaxial 
magnets (for the appropriate thermodynamic analogues). 

We shall see the origin of such universality in the renormalisation group in the 
next section. 

We postpone any further discussion of these two remarkable phenomena, stressing 
only that their appearance is to be associated with the existence of the macroscopic 
fluctuations which occur near the critical point. 

2.2. Tlzeoretical framework 

2.2.1. The fsing model. The standard theoretical framework for studying the thrrmo- 
dynamic properties of a system is statistical mechanics. In  this framework, the 
average values of thermodynamic quantities, which are what we observe in experi- 
ments, can be calculated in principle from the forces between the microscopic con- 
stituents of the system (e.g. the electron spins in the magnet). 

IVe shall 
discuss these for the simplest of all models, the Ising model. This model is used 
as a prototype model for describing the critical behaviour of uniaxial magnets with 
short-range interactions, as discussed at the close of the pevious subsection. I t  
is not claimed that the model is a realistic one for any particular such uniaxial magnet, 
but that it contains the correct qualitative features of the interactions between spins 
in all such magnets so that it is expected also to have the same critical exponents as 
all such magnets, according to the universality principle. 

(i) The  first ingredient is a choice of microscopic variablc, to correspond to 
an electron spin in the magnet. The Ising model has a prototype spin variable s 
which takes only two values ( 5  1) at each site, labelled by f i t ,  of a rigid lattice as in 
figure 2. Thus an Ising model for a system of N lattice sites has N spin variables sm. 

(ii) The  second ingredient is the Hamiltonian: this is the object which gives 
the energy of the system for a given set of values, or configuration, of the spins. The  

There are always three basic ingredients in 'statistical mechanics. 
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Figure 2. Part of a rigid lattice on which the Ising model can be defined; 1 and 2 are nearest- 
neighbour sites. 

typical Hamiltonian we shall consider has the form 

.#= -J ~ m ~ n  
0" 

where denotes the sum over all pairs of sites m and n which are nearest neighbours 
to one another on the lattice, e.g. sites 1 and 2 in figure 2. We say that this is a nearest- 
neighbour interaction, and J is the nearest-neighbour coupling constant, measuring 
the strength of this interaction. 

Clearly the contribution to the sum in equation (2.3) from two parallel (anti- 
parallel) adjacent spins is -J (  + J). Therefore, provided J is positive, the lowest 
energy configuration is one in which all the spins are parallel (say, all are +) and 
therefore at low temperatures the system should look ferromagnetic. On the other 
hand, if J is negative, the configuration of lowest energy occurs when all adjacent 
spins are antiparallel, corresponding to the antiferromagnetic state of figure 3. T o  
summarise, if a phase transition takes place we expect: 

J > O  ferromagnetic 

J<O antiferromagnetic. 

The conventional interaction which is added to the Hamiltonian (2.3) to describe 
the effect of a uniform external magnetic field H is 

+ - + - + 
Figure 3. J < 0 : antiferromagnetic ground state. 
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(iii) The  third ingredient is a prescription for calculating the expectation values 
of thermodynamic quantities. These are given in terms of the correlation functions, 
defined by 

Here exp ( -  .#/AT) is the conventional Boltzmann factor, which weights the sum 
over all configurations of the spins, If there are N lattice sites, there are 2 N  
terms in this sum, since each spin can take on two values. 

The  denominator in equation (2.4) is the partition function: 

2 = 1 exp (- .#/AT). 
is) 

The  mean magnetisation per lattice site, which is what is measured experimentally, 
is identified as 

or simply as ( s m )  for any site m if translation invariance holds. The higher correlation 
functions are related to physical quantities; we shall discuss this further in the next 
section. 

Strictly speaking, one should always consider a system of a finite number N of 
lattice sites and apply some appropriate boundary conditions to the spins on the 
surface. One then obtains the behaviour of a macroscopic system by taking the 
'thermodynamic limit' N-+co. In  fact, it is only in this limit that any singularities 
such as equation (2.1) can occur; for a system of a Jinite number N of lattice sites, 
the expression (2.6) is a finitc sum of finite functions which are entire (analytic) 
for all positive T. This remark is clearly related to the idea that the phase transition 
occurs when the correlation length is infinite which can occur only in an infinite 
system. In  this review the problems of taking the limit Ndm rigorously will be 
side-stepped as we shall see. 

2.2.2. Conventional calculations in the Ising model. ( U )  Exact solutions. In  principle, 
equations (2.3), (2.4) and (2.6) enable one to calculate exactly the magnetisation 
in this model. In  practice, the configuration sums in (2.4) cannot be performed 
exactly in the limit N-+co, except in a very small number of exceptional cases. 
These include (i) one-dimensional systems, where one finds that no transition takes 
place at any finite temperature (for interactions &, 1L JmnSmSn where J,, decreases 
faster than ln-wz/-'T, a>2) ;  and (ii) Onsager's solution, and generalisations of it, 
for the Hamiltonian (2.3) in two dimensions. The  result does exhibit a phase transi- 
tion, with scaling behaviour (2.1) and the critical exponent /3= $. This kind of 
work till now has been restricted to two-dimensional models, with only the simplest 
kinds of interactions; there is little insight into the phenomenon of universality, 
and no solutions are known when an external field is added. 

(b )  Approximation schemes. In  the absence of an exact solution, thc theorist 
naturally looks for a suitable approximation scheme to provide a description of the 
region of interest. There are many such approximation schemes for the equations 



10 D Wallace and R K P Zia 

(2.3)-(2.6). We mention the high-temperature series expansion which consists, 
in its most primitive form, of expanding the Boltzmann factor for T very large: 

(2.7) 
1 

21 
e x p ( - s E " / K T ) = l - ~ / k T 3 - - - ( ~ / k T ) 2 3 .  . . .  . 

The configuration sum can now be performed on each of the terms in this expansion, 
and the correlation functions are obtained as a systematic expansion in powers 
of 1/T. 

However, it is typical of such approximation schemes that they break down in 
the critical region. Their failure in this region can be traced back to the existence 
of the large correlation length. For example, at first order in 1/T, only one power 
of the Hamiltonian is present and the correlation between spins extends only over 
the range of the interactions in 2, At second order in 1/T, two powers of Yf are 
present and the correlation between spins extends over twice the range of the inter- 
actions in 8, and so forth. In  order to obtain infinite-range correlation, as at the 
critical point, one must work, in principle, to infinite order in the high-temperature 
series expansion. In  fact, the radius of convergence of this expansion is certainly 
bounded by l /Tc .  For example, the spontaneous magnetisation is zero to all orders 
in the expansion in 1/T;  this expansion must clearly break down for l / T  z l / T c  
( T  e Tc),  Other expansion schemes suffer from the same defect. (The breakdown 
may be even more dramatic; the first-order 'correction' to the mean field approxima- 
tion is itself infinitely larger than the mean field behaviour in the critical region. 
This is discussed further in 95.4.) However, it should be said that computer studies 
of series expansions, and Monte Carlo methods enable one to extract good numerical 
results for critical behaviour, which support the features of universality and critical 
exponents and provide a convenient yardstick against which to measure the results 
of RG methods. 

2.3. The renormalisation group 

2.3.1. Basic idea. In  the magnetic phase transition, we are clearly faced with a 
difficult problem. Each spin interacts directly only with the spins in its neighbour- 
hood and the phase transition occurs through the cooperative effects of the interactions 
among a large number of spins. The  existence of these cooperative effects precludes 
the direct use of approximation schemes which take into account only interactions 
amongst a few spins. 

The  renormalisation group is designed specifically to tackle this kind of problem. 
There are many ways of formulating the renormalisation group, but all have the 
same basic ingredient. In  the language of spins on a lattice, such as in the Tsiug 
model, the central idea is a stepwise reduction in the number of spins in a region the 
size of the correlation length. At each step, one eliminates several neighbouring 
spins in favour of a single new spin which is made to reproduce the effect of the 
old cluster. After an appropriate number of steps, we are left with a system in which 
the ratio of  correlation length to spin separation is not large. Such a system is far 
away from its critical point and we can do any suitable kind of perturbation theory 
to finish off the problem. 

In  order to ensure that a single new spin does indeed play the role of several 
of the previous ones, the Hamiltonian of the new spins must be specially chosen; 
the interactions it contains must 'mock up' the interactions of all the previous spins. 
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The  parameters, or coupling constants, of the new Hamiltonian will therefore 
depend on the coupling constants which parametrise the interactions of the initial 
system. 

In  order to simplify the notation, we absorb the factor l/kT into the Hamiltonian 
&f and denote the various kinds of interactions by Ki (or K ) ,  e.g. 

K1= J /kT  (2.8) 
is the nearest-neighbour coupling, Kz is the next-nearest-neighbour coupling, etc. 
In  this notation, therefore, we write 

K P )  =fi( K )  i = l ,  2 , .  . . (2.9) 

where &cl) are the couplings of the new spins (the superscript (1) tells us  that we 
have taken one reduction step). 

At the second step one starts with a set of spins whose interactions are para- 
metrised by K(1) and repeats the process hy introducing a second set of spins whose 
interactions are parametrised by K(2) according to 

K p )  = f $ ( K ( l ) ) .  

One iterates the process, thinning the number of spins at each step and generating 
new equivalent Hamiltonians, parametrised at the lth step, say, by couplings {Ki‘t)} 
where 

K((0 =ft(K‘1-”). (2.10) 

As 1 increases, the systems described by {K$(I)} are further and further from the 
critical point, in the sense that a region the size of the correlation length contains 
fewer and fewer independent spin variables. One stops the iterations at some suitable 
value of I ,  say L, for which there are only a few spins left in a correlation length 
and some conventional perturbation theory may be applied. This solves the original 
problem; it gives the properties of the original system in terms of the parameters 
{&(a} and hence in terms of the original couplings {KO, as required, through the 
recursion formulae (2.10) which give the {Ki(L)} in terms of {Ki}. 

One further point is worth stressing before we illustrate the HG transformation 
(2.9) in a simple example. In  practice, the functions fi can no more be calculated 
exactly than the original Hamiltonian can be exactly solved. One has to resort 
to some suitable approximation scheme. However, in contrast to thermodynamic 
quantities which are singular in the critical region, the functions fi are expected to 
be regular. (It is possible to justify this expectation a posteriori, or by physical argu- 
ments.) The  approximation schemes which failed for calculating thermodynamic 
quantities are therefore potentially usable here. This idea is a very important part 
of the RG method. 

2.3.2. An example using decimation. Consider an Ising lattice in two dimensions, 
as in figure 2. The  decimation scheme consists of dividing the lattice into a set 
of spins (o), which constitute a lattice of the saine form as (isomorphic to) the original 
square, and the complementary see ( 5 ) .  The example w e  shall consider is shown 
in figure 4. One then dejines an ef€ective Hamiltonian # ’ ( U )  for the U spins by 
performing an average over all the values of the 6 spins: 

exp ( -  JP’(u))= 2 exp ( -  ~ ( s ) ) .  (2.11) 
{ij} 
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5 0 

- - - - 
(5 0 (5 0 0 

Figure 4. Spins U and in a possible decimation scheme. 

The value of the partition function of the new spins is equal to that of the partition 
function of the original spins : 

(2.12) 

since the spins (U) and {e }  together constitute the entire set (SI. 
This formulation of a new effective Hamiltonian therefore realises the two basic 

principles of the renormalisation group method : thermodynamic quantities of the 
original system can be calculated from the new (e.g. the partition functions 2 are 
the same!) and the new system is further from criticality (the ratio of correlation 
length to lattice spacing has been reduced by the factor 8 for the case illustrated 
in figure 4). These properties are not self-contradictory: in 8' there is a spin- 
independent constant term which builds up the partition function of the new to the 
value Z at each iteration. 

We are faced now with the evaluation of the partial configuration sum (2.11). 
This cannot in general be done exactly, so we must resort to some approximation 
scheme. Now in this partial configuration sum, the (T spins are held fixed and a 
nearest-neighbour interaction 06 actually looks like an external field term acting 
on the 5 spin. Therefore this partial configuration sum can be understood as repre- 
senting a thermodynamic system far from its critical point. This is the kind of physical 
argument raised to justify approximations in the calculation of the new effective 
Hamiltonian 2'. 

In  order to obtain a simple recursion formula to play with, we shall make an 
approximation for by expanding exp ( -  &') in 2, as in the series expansion 
(2.7). If contains only nearest-neighbour interactions, the result may be written 

eXp(--@(S))=2." 1+NbK2/2!+K2 C u,(Tv+O(K4)] (2.13) 
( 81 f ( P V )  

where we have labelled the new sites by p, v ,  etc. If we identify this with the expansion 
of the exponential of the new Hamiltonian as in (2.9), we may write 

(2-14) 
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with 
- ~ = m i n z + ~ ~ ~ 2 / 2 ! + 0 ( ~ 4 )  (2.15) 

K' = K Z +  O(K 4). (2.16) 

In  these expressions, 1p is the number of ii sites, 2m is the number of terms in 
the sum and Nb is the number of bonds in the original lattice. The  primary 
rule to remember in obtaining equation (2.13) is that any term in which the spin (3 

at any site appears only once gives zero when averaged on the values ii= i- 1. There 
is therefore no contribution from first order in 2, and from second order one must 
take the same bonds from each X (giving NbK2/2!) or adjacent bonds joining 
nearest-neighbour U spins. 

Let us now close our eyes, forget about the terms of order K4, and show how the 
recursion formula 

K ' = K 2  (2-17) 

is used to obtain information on the phase transition. 

the jixed point (others are discussed in $2.3.3) 
The first remark to be made is that the recursion formula (2-17) has, in particular, 

K"=l. (2.18) 

If K = 1, then the new effective coupling K' has the same value 1. If K is just larger 
than 1, then K' is larger than K,  i.e. further away from 1. Similarly, K < 1 implies 
K' < K.  We say that the fixed point is unstable to a perturbation away from it (see 
figure 5 ) .  

, , f 
KC K 

t--+----: 
Figure 5. Illustration of the flow from the recursion formula (2.17); successive dots indicate 

values of nearest-neighbour coupling after each iteration. 

This behaviour must be compared with the property built into the RG: if we 
start with a system that is close to, but not at, its critical point, the new system is 
slightly further from its critical point. On this basis we must identify the value 
K = 1 as corresponding to the critical point of the system. Therefore we make the 
prediction 

I 
J 
- = 1. 

k Tc 
(2.19) 

This is to be compared with the result from Onsager's exact solution of this problem, 
J/kTC N- 0.44. 

We can go further and ask what is the behaviour of the system close to its critical 
point. In  order to study this we expand equation (2.17) in a Taylor series for K 
close to K". Simple algebra shows that 

K'-K"=2(K-K")+O(K-K")2. (2.20) 
For a system sufficiently close to its critical temperature, the terms of order (K - K*)2 
are negligible. Now, we should compare this linearised equation with the fact that, 
in units of respective lattice spacing, the correlation length has been reduced by a 
factor of Q, i.e. 

E' = $ E .  (2 ~ 21) 



14 D J Wallace and R K P Zin 

Equations (2.20) and (2.21) say that (K--K*)  and 6 must be inversely related to 
one another; if we double one, we must halve the other, i.e. 

[ K ( K  -K")-1. (2.22) 

Now if we look at what this relation implies for a system with a fixed J, with K 
varying as T is varied according to K = J /kT ,  we find 

t( 7') K ( T  - TC)-'. (2.23) 
Thus we see that the scaling phenomenon seen in equations (2.1) and (2.2) can be 
predicted in the RG approach. Moreover, the values of critical exponents are cal- 
culable; equations (2.2) and (2.23) imply 

v = l  (2.24) 

for the two-dimensional Ising model. Fortuitously, this is the exact result found in 
Onsager's solution of this model. 

2.3.3. Further remarks. More insight can be gained from this simple example. 
(U) There are also two other fixed points of the recursion formula (2.17), namely 

K X  = 0 and K* = CO. The first corresponds to a system at infinite temperature, 
where the spins act essentially independently of one another because the coupling 
between them vanishes. The second corresponds to a system at T -0, where the 
effect of the coupling is so strong that the system sits in one of the aligned con- 
figurations of lowest energy. These fixed points are sometimes referred to as 'trivial' 
in the sense that they describe systems at J = 0  or T = O .  The  critical fixed point 
I<* I= 1 is distinguished by the special property that the effective (non-trivial) coupling 
between the U spins is the same as the coupling between the s spins, and so on at 
each iteration; this reflects the existence of cooperative fluctuations of spins of all 
length scales. More generally, we shall see in $3 how fixed-point Hamiltonians 
correspond to systems which are scale-invariant in a conventional sense; the physics 
they describe is unchanged if the lattice spacing is changed by a factor of 2, 4, 8, 
etc. 

( b )  What happens if we decimate, leaving every ninth spin? Then since the 
(r spins are now separated by three bonds, it takes third order in perturbation theory 
to produce a nearest-neighbour interaction. One readily finds 

K'-K3+O(k75) .  

Neglecting order K 6 gives non-trivial fixed points 

K"= & 1. 

The fixed point K*= -t 1 can be analysed as before: expanding about it, we 
find 

K'-K"=3(K'-K")+O(I<-K")Z. 

This must now be compared with a dimensionless correlation length which has 
decreased by a factor of &, Therefore we again obtain U =  1. 

The fixed point K"= - 1 is new and capable of physical interpretation. I t  just 
corresponds to a fixed point for negative K, i.e. an antiferromagnetic system (see the 
remarks after equation (2.3)). It appears only when the new spins are separated by 
an odd number of old lattice spacings. The  ordered state of the antiferromagnetic 
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system is shown in figure 3, and will be reflected in the form of the fluctuations 
which are the precursors of it; only when the lattice spacing changes by an odd 
integer does such an antiferromagnetic fluctuation still look antiferromagnetic. 

There is a very important moral to be drawn from this simple example, The  
RG can be applied with confidence only when the nature of the cooperative fluctuations 
is recognised; it must successively eliminate such fluctuations of larger and larger 
range. 

(c)  This section would be incomplete without a warning; the simple decimation 
scheme outlined above has rnany serious defects. We obtain the recursion formula 
valid for small K and use it at K N 1; when higher orders in K are included there 
may exist several fixed points which are impossible to interpret. It would imply a 
finite transition temperature in a one-dimensional system, although it is known 
that none exists. In  fact, for d = 1, an exact recursion relation may bc derived for 
the decimation scheme in which only one out of every b spins is kept. The result 
is 

tanh K' = (tanh K)b 

which has fixed points only at K = O  and CO. 

Also, decimation in this naive fashion is correct only for fixed points describing 
systems whose critical exponent 7 is exactly 2 - d.  This condition is not satisfied by 
most systems, In  $4.2, we discuss the origin of this difficulty and review several 
methods avoiding it. 

2.4. & m " r y  
In  a magnctic system all fluctuations with a range between the lattice spacing 

and thc correlation length are important. As the system approaches its critical 
point, the correlation length becomes macroscopic. The RG approach to this niany- 
body problem is to set up a transformation which is applied many times and succes- 
sively removes the effect of fluctuations of larger and larger size at the expense of 
renormalising the effective interactions. Critical behaviour of the system is governed 
by fixed point (s) of the RG transformation, and the phase transition temperature, 
scaling behaviour and values of critical exponents can all be predicted from it. These 
ideas may be applicable in any circumstance where the interactions are formulated 
at one length scale and cooperative fluctuations are important over a whole range 
of length scales, although the nature of the fluctuations must be recognised. 

We end this section by listing a few general references. For inore complete 
discussions on the phenomenology of scaling in critical phenomena, see Stanley 
(1971), Fisher (1967a) and Kadanoff et al (1967); the liquid--gas system is discussed 
in some detail by Sengers and Sengers (1976). Details on exactly soluble models 
can be found in McCoy and Wu (1973), Baxter (1972) and Thomson (1972). Series 
expansion approximation schemes are reviewed in Dornb and Green (ed) (1974) and 
Monte Carlo methods by Binder (1976). The  idea of setting up a transformation 
by blocking spins on a lattice is due to Kadanoff (1966). Exact RG transformations 
for lattice models in one dimension are discussed by Nelson and Fisher (1975) and 
Balian and Toulouse (1974); realistic calculations with the decimation method are 
described in Wilson (1975). General reviews of the RG method are given by hila 
(1973b, 1976b), Wilson and Kogut (1974), Fisher (1974a), Toulouse and Pfeuty 
(1975) and others; some will be listed later as appropriate. 
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We mention also that the RG has found applications in many other branches of 
physics. In  fact, it was originally formulated in relativistic quantum field theories 
of elementary particles by Gell-Mann and Low (1954) and Stueckelberg and Peter- 
mann (1953): for modern reviews, see e.g. Politzer (1974) and Macfarlane (1977). 
The application to the Kondo problem is discussed by Wilson (1975) and renor- 
malisation in turbulence by Kraichnan (1975). We give these only to indicate 
the breadth of applicability of the RG ideas; more references to applications are 
given in $6. 

3. The renormalisation group-general formalism 

In  the previous section, we saw how the critical temperature and a critical ex- 
ponent can be obtained in a simple RG calculation. In  this section we shall look at 
the general nG formalism and discuss how other physical properties are obtained 
from it. A summary of the techniques for actually calculating the HG transformation 
functions in lattice models is given in the next section. 

3.1. Critical exponents and universality 

I t  is clear that if we calculate higher orders in K in the decimation scheme de- 
scribed in the previous section we will produce new types of coupling. If we generate 
such coupling at one iteration, it appears in the starting Hamiltonian for the next 
iteration; to be consistent therefore we must include it in the starting Haniiltonian. 
In  fact, every nG calculation on a lattice with any pretence to accuracy involves 
several coupling constants. We write 

&@= - c Kist (3 * 1) 
i 

where Sf denotes a particular interaction type. For example, the nearest-neighbour 
interaction, SI say, is 

SI= smsn 
(mn) 

as in equation (2.3). Then the typical recursion formula has the general form of 
equation (2.9) 

The complications of including several types of interaction have some compensation 
however; we shall see how the feature of universality can arise. 

Ki' =h( K) i = l ,  2 ,3 ,  * ,  . , (3 *2) 

3.1.1, Mathematical formalism. Fixed points K$* of the recursion formula (3.2) 

Ki" =fi(K") (3 .3)  
play a very important role in the general case, as they did in the analysis of equation 
(2.17). The solutions K" of this equation may have a very rich structure; there 
may be isolated roots of (3.3),  or families of solutions parametrised by a set of con- 
tinuous variables, or no solutions at all. The  existence of some fixed points seems to 
be an essential feature for obtaining a description of phase transitions. When we 
plot the solution of equation (3.3) in the space of coupling constants, we shall assume 
in this section that they form an isolated set of points. From the example of the 
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previous section, we expect to distinguish at least three classes of fixed points-a 
high-temperature fixed point, in which all the K vanish, a set of low-temperature 
fixed points, with some K infinite, and a set of 'critical' fixed points, with non-zero 
finite K.  

Given a fixed point, we can ask how the recursion formula behaves for points 
close to K". This is obtained by expandingb(K) in a Taylor series expansion about 
K*, as in equation (2.20). We have 

or, using (3.2) and neglecting O(K -K")2, 

where 
( K  ' - K*)t = Mtj(K - K * ) I  

Note that we use the repeated index summation convention, unless otherwise stated. 
A linear problem like equation (3.4) is always tractable provided we can diagonalise 

the matrix Mtj. The eigenvalues ha and (left) eigenvectors v j ( a )  of Mi, are defined 
by 

C ~j (a)Mjt= havi (a) a = 1 , 2 , .  * .  , ( 3 . 5 )  
j 

If we define 'normal' coordinates qa by 

we find the decoupled equations: 
qa' = Xaqa. (3.7) 

Note that the corresponding right eigenvectors U.I (a) enable (3.6) to be inverted for 
( K  - K*)t in terms of qa. 

There are two assumptions implicit here. Although M is a real matrix it is in 
general not symmetric (hence the distinction between left and right eigenvectors). 
Therefore it may not be diagonalisable, but may only be reducible to Jordan canonical 
form. Even if it is diagonalisable, it need not have real eigenvalues. Since in almost 
all practical calculations known to us M is diagonalisable with real eigenvalues, we 
shall assume this in the general formalism. 

I t  should now be clear what happens. 
(i) The  components qa for which ha> 1 grow; qal >qa and the new parameters 

K' are further from K* than the original ones K. The interaction associated with 
this perturbation, C.2 uc(a)Sf, is said to be relevant for the fixed point K". 

(ii) The components qa for which ha < 1 decrease; qa' < qa and the new parameters 
K' are closer to K" than the original ones K. The  interactions associated with such 
perturbations are said to be irrelevant for the fixed point K". 

(iii) Eigenvectors for which ha= 1 are said to be marginal; in the linearised equa- 
tion (3.7) they neither grow nor decrease. Only by including the higher-order terms 
in q can we determine what happens to such perturbations. 

A typical picture of what happens to the parameters under the RG is shown in 
figure 6, for the case where there are three couplings and the fixed point K* has 

2 
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Figure 6.  Schematic illustration of flow near a fixed point. Points A and B start in the critical 
sheet and iterate (dots) into the fixed point. Point C (D) starts just ‘above’ (‘below’) 
the critical sheet, then moves past the fixed point and away along the (opposite) 
relevant eigendirection. 

one relevant and two irrelevant eigenvalues. The  points give the values of the para- 
meters ( & ( E ) )  as the RG transformation is iterated (I = 1, 2, 3, . . . ) starting from 
various initial points A, B, C and D. The  stable manifold of the fixed point is the 
set of points which are attracted to the fixed point under repeated iteration of the 
RG; it is a two-dimensional manifold in this case, spanned by the two irrelevant 
eigenvectors for small q, and differing from the plane of these vectors by terms 
of second order in q. Points A and B lie in the stable manifold; points C and D 
are just off the stable manifold and the Hamiltonians (sets of couplings) obtained 
from them under RG transformation come close to the fixed point but end up being 
driven away from it along the relevant eigenvector. 

An implicit assumption in all of the above is that the transformation functions 
f i ( K )  are regular; the derivatives (3 .4(b))  exist and, as in figure 6, points which 
start close together are still close after one iteration. No singularities appear in 
these functions and they can be calculated using approximation schemes (see remarks 
in 52.3). 

3.1.2. Physical interpretation. In  addition to the structure of fixed points and their 
stable manifolds which can be erected in the space of coupling constants using the 
recursion formula (3.2), one can also define surfaces corresponding to systems of a 
given dimensionless correlation length (ratio of correlation length to lattice spacing). 
In  particular, one can define the critical surfclce corresponding to systems ut their 
critical point, with e= CO. For an ordinary magnetic transition, we must control 
two parameters, the external field (equal to 0) and the temperature (equal to Tc)  
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to be at a system's critical point, Therefore for an ordinary magnetic system the 
critical surface has two dimensions less than the space of all the coupling constants 
we consider. 

In  the simple example we considered in the previous section, there was no external 
field and we had only one coupling constant. The  critical sheet in this example is 
then just a point-the value of I( at which the system goes through a phase transition. 
In  that example there is a very close connection between the fixed point and the 
critical point-they are identical. In  the general case we consider in this subsection 
this connection is extended : the critical surface corresponds to the stable manifold 
of the fixed point describing the magnetic phase transition. 

In  order to appreciate this point, the reader is reminded that we know qualitatively 
what happens when we do an RG transformation on a system which is close to cri- 
ticality; the transformed system has fewer degrees of freedom in a correlation length 
than the original system and hence is not so close to criticality. If the original system 
is actually ut its critical point (the correlation length is infinite), then the new system 
is also at its critical point, because the number of new spins in a correlation length 
is still infinite. 

Therefore, trajectories which start in the critical surface remain in it. Trajectories 
which start oft' the critical surface move away from it. Hence any fixed point in 
the critical surface must be unstable to perturbations out of the critical surface. In  
other words, the RG transformation is constructed so that the critical fixed point 
is unstable to perturbations involving precisely those interactions which must be 
controlled to be at a critical point. 

Of course, there may exist other fixed points in the critical surface (we shall discuss 
their significance later). However, if there does exist a fixed point which is stable to 
all perturbations within the critical surface and unstable only to perturbations out 
of the critical surface, then it will control the behaviour of a 'generic' (i.e. typical) 
magnetic transition. For its stable manifold will coincide with the critical surface. 
Then all systems at their critical point will move in to K" under the RG (cf points 
A and B in figure 6). All systems close to their critical point (cf C and D in figure 6) 
will pass close to K* and their growth away from K* will be determined by the 
same relevant eigenvalues A, of equation (3 .7)  (qualifications due to other fixed 
points in the critical surface are discussed later). 

The  conclusion of this discussion is that if we can find a fixed point which is 
only twice unstable, to perturbations in T away from Tc and H away from zero, 
then we shall have uiziversal critical behaviour. In fact, the critical exponents asso- 
ciated with H and (2" - Tc)  are obtained from the eigenvalues of the corresponding 
relevant interactions; the eigenvalues of the irrelevant operators (A, < 1) are associated 
with correction-to-scaling exponents. 

The  proof of these last two statements requires only a refinement of the arguments 
following equation (2.20). Firstly, consider a system which differs from KX by 
a perturbation q1 along the unstable eigenvector ut (1) corresponding to perturbations 
of T away from Tc.  Since the couplings K are analytic in T (T # 0) we can take 

up to negligibly small terms of order (T - Tc)2. Then the recursion formula 
ql'= A l q l  is equivalent to 

( T  - Tc)' = hl( 3' - Tc). (3 * 9) 
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If the RG corresponds to a change in length scale by a factor b at each iteration, then 
the dimensionless correlation length transforms according to 

f ’  = b-18. (3. lo) 
Combining equations (3.9) and (3.10) we obtain 

with 
[CC ( T  - TC)-’ ( H  =0) 

v =  In b/ln A l .  

(3.11) 

(3.12) 

Similarly, if the eigenvector corresponding to an external field obeys 

h’ = Ash (3.13) 

then at T =  T ,  the correlation length f tends to infinity as 

fKh-ln blln A Z .  (3.14) 
Another illuminating way of obtaining these results is as follows. After E iterations, 

we have 
f ‘Z’=b-lf  q1(l) = (A#q1. (3.15) 

According to the principles outlined in the previous section these equations are to be 
iterated a suitable number, L say, of times until the new system is far from criticality, 
This is reached when 

f ( L )  ==A q1 (14 B (3 .16)  

where A and B are both of order 1 ; the correlation length ceases to be large when 
the perturbation out of the critical surface ceases to be small. I t  is a straightforward 
matter to eliminate L in equations (3.15) and (3.16) to obtain 

f = AB’qi-” (3.17) 
with Y as in (3.12). 

Secondly, suppose that we have an irrelevant interaction 

(3.18) 

in addition to a relevant one, q1 say, which again gives a measure of T - T,, This 
corresponds to a system C or D in figure 6. After the L iterations, 43 will be very 
small : 

qg(1J)  = (A3)Lqs. 

Precisely how small q3(L)  is, is determined by how large L is, i.e. how close T is 
to Tc initially, By eliminating L using (3.15) and (3.16), one finds 

(3.19) 

Since the system after L iterations has no critical fluctuations, we can then perturb 
in the variable q3(L). This perturbation produces corrections to the case 43=0 
proportional to 

Note that such terms are arbitrarily small, even if q 3  is not small, provided that 
T is close enough to Tc. They provide corrections to the leading singularities such 
as (3,11), governed by the correction-to-scaling exponent -In Aa/ln A 1  ( > 0). These 

q3(L) = q3[( T - T,)/B]-ln Adln A I ,  

q3( T - Tc)-ln W l n  A i .  (3.20) 
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corrections are confluent singularities-they correspond to weaker branch cuts on 
top of leading singularities in (2“ - Tc). 

We end this subsection by summarising these results. I n  order to obtain the 
maximum universality in a magnetic transition, we look for a fixed point which is 
unstable only to perturbations corresponding to H and T - Tc. The stable manifold 
of this fixed point then corresponds to the critical surface. All systems close to this 
stable manifold exhibit universal critical behaviour. Critical exponents are given 
by eigenvalues of the transformation linearised about the fixed point. Corrections 
to the leading universal critical behaviour are governed by the eigenvalues of 
irrelevant interactions. 

A final remark: the linearised recursion formulae are valid strictly only very 
close to the fixed point. The iteration to L brings them outside this region but if 
we start with q arbitrarily small, then the vast majority of iterations occur close to 
KX and the linearisation becomes arbitrarily good. These comments may be 
formulated quantitatively by constructing so-called non-linear scaling fields Q, 
defined by 

(3.21) 

where this second equation is satisfied for all Qa (not necessarily small). In  the 
space of K the Q are curvilinear coordinates and QI = 0 = Qz gives the critical sheet. 
The  critical value for the nearest-neighbour coupling K in the Ising model is given 
by the intersection of the critical sheet with the K axis. If the fixed point is not 
too far from this axis, an approximate value for the critical K is obtained from the 
intersection of the tangent plane at the fixed point (spanned by the ug@) of irrelevant 
interactions) with the K axis (see Niemeijer and van Leeuwen 1976, Dalton and 
Wood 1969). In  terms of the curvilinear coordinates the corrections to scaling take 
the form: 

Q3( T - Tc)-ln W l n  AI  

these are small with no restriction on the (initial) size of Q3 provided ( T  - T,) is 
small enough. 

The  general analysis of systems with several coupling constants is given by 
Wegner (1972a). Non-linear scaling fields are discussed by Riedel and Wegner 
(1974). Global features associated with the non-linear fields are discussed by Nicoll 
et al (1975). Further discussion of these topics can be found in several reviews, e.g. 
Fisher (1974a), Niemeijer and van Leeuwen (1976) and Wegner (1976). 

3.2. Scaling in free energy, equation of state and correlation functions 

Having had a qualitative understanding of the relationship between fixed points 
(and their neighbourhoods) of RG transformations and the important features (uni- 
versality, singularities, critical exponents) of a second-order transition, we will 
examine how these features arise in thermodynamic quantities in a more detailed, 
quantitative fashion. We follow the treatment reviewed in Niemeijer and van Leeuwen 
(1976). 

First, let us present the medium for discussing more than one critical exponent 
simultaneously, i.e. functions which ‘scale’ in several variables : the class of generalised 
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homogeneous functions. They satisfy 

F ( x ~ ,  . . . , X ~ ) = P Y O F ( ~ Y W ~ ,  , . * , pYn%o) (3 8 22) 

with p being a positive parameter and yi being arbitrary (real) numbers. Although 
yo can be chosen to be unity without loss of generality, it is kept for the convenience 
of identifyingp with the scale change, b, in an RG transformation later. An introduction 
to generalised homogeneous functions is given in Stanley (1971, chap 11). 

So far we have considered (3.22) only for functions of a single variable. For 
example, if 6, as a function of t r  T - TC, satisfies 

6(t) = Wit) 
then 6 is necessarily (up to oscillations) proportional to t - l k ,  with 

y1 =In bhl= In Xl/ln b. 
This subsection is devoted to showing how the 'most singular' part of thermo- 

dynamic functions can be expressed as generalised homogeneous functions, extracting 
leading corrections to these parts, and deriving the scaling laws (relationships among 
critical exponents). The  phenomenon of universality will be examined in a little 
more detail. 

Unless it is explicitly stated otherwise, we adopt the convention of absorbing 
a factor of 1/KT into all Hamiltonians and energies so that they are dimensionless 
quantities. 

3.2.1. Free energy. Given a Hamiltonian .%'( K ) ,  characterised by a set of couplings 
( K } ,  the Gibbs free energy G ( K )  can be calculated via the partition function 
(equation (2.5)): 

G(K)=-In  e x p ( - P ) .  (3.23) 
ta l  

Similarly, we have G for the transformed system, characterised by .%"(K') : 
G'( K')  = - In C exp ( - 3'). (3.24) 

Since 3' is defined so that the partition function remains the same, we have 

G = G .  (3 -25) 

This subsection is devoted to extracting information out of this relation. 
In general, there is a part of # which plays an easily tractable role in the KG 

transformations: the spin-independent part (e.g. F of 2' in equation (2.14)). Denot- 
ing this term (per site) by KO, we write 

L @ ' - N ~ ' O $ Z R  (3.26) 

where 2~ is the spin-dependent part, obeying C {8}.%'n = 0. The term NKo adds 
nothing but a trivial constant to the free energy, so without loss of generality we 
assume that KO is zero. .@' still has a spin-independent part: 

S' = "KO' f $fR' 

where KO' is determined by the couplings { K }  of #; we write 

Ko'=fo (K)bd .  (3.27) 

We assume thatfo, likeft (i > l), is a regular function of K. 
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Next let us assume the existence of a thermodynamic limit so that the Gibbs 
free energy per site is well defined: 

(3 .28 )  g ( K ) = - -  In C exp(-%). 

Note that the function g is defined here for a Hamiltonian with n o  spin-independent 
part. Equations (3.23)-(3.25) give 

1 

N i a )  

1 
g ( K ) =  -- In e x p ( - 2 )  N {U} 

1 =-- In  C exp( -N’Ko’ -~ f~’ )  
N Io1 

From the definition of g in equation (3 .28) ,  we see that the last term is (. 
Since N’jN = ha, we arrive at an important equation for g :  

‘ I  

(3 .29 )  

(3 .30)  

In  a domain around some fixed point where (3 .21)  is well defined, we can eliminate 
the K in favour of the scaling fields Qa. Denoting the free energy per site again by 
g(Qa),  we have from (3 .21 )  

where 
(3 .31)  

(3 ,32 )  

Except for the inhomogeneous term (fo), g is a generalised homogeneous function 
of the scaling fields Q (cf equation (3 .22)) .  

As an appetiser, let us look at the consequences of (3 .31) .  Suppose g has a part, 
g,, which is a singular function of, say, 81 at the origin. By assumptionfo is regular. 
S o g ,  satisfies (3 .31)  without thefo term. Following the analysis for f at the beginning 
of this subsection, we arrive at 

g s z  181 1 d’yl. (3 .33 )  

If 81 corresponds to perturbations away from T,, we have Q1= 41 + O(q~Z)cc( T - T,) 
+ O( T - T,)z, so one predicts singularities of the form I T - Tc I dlgi. 

3.2.1.1. The case of one scaling Feld. T o  derive the form (3 .33 )  as well as an ex- 
pression for the coefficient of proportionality let us consider the simplest case of one 
scaling field Q (the index 1 is now dropped for clarity). The  solution to (3 .31)  may 
be written down by iteration provided that the remainder tends to zero and the 
series converges : if 

then we have 

lim b-Ldg(XLQ) = 0 (3 .34 )  
G c c a  

m 

(3 .35 )  
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The condition (3 .34 )  is not automatic and must be checked in all cases. Since fo is 
regular by assumption (and in practice), we have 

(3 .36)  

If A is less than unity (Q irrelevant), then hnb-d < 1 for all n, so that on substituting 
(3 .36)  into (3.35) the order of summations may be interchanged and the I summation 
may be done. The result is 

(3 * 37) 

which is a regular function of Q ,  the series having a radius of convergence h times 
that of (3.36).  

For h > 1 ( Q  relevant), hnb-d > 1 for all large n and the order of summations may 
not be interchanged. We can still define gr(Q) by the series (3-37) .  The difference 
between g(Q)  and gr(Q) is obtained as follows. 

Suppose hn#Bd for any integer n.  Let m be the largest value of n such that 
hnb-d< 1, i.e. 

Xmb-d< 1 e hm+1b-d. (3 .38)  

Now split fo into the sum off< and f>, where 
m 

n-nt+l 
f>(Q)= CnQn (3 39(a)) 

f<=fo- f>  (3.39(b)) 
and 

so that 
m m 

g - gr = C b-ldf >( X‘Q) - 2 - --& Qn. (3 -40) 
1 - Xnb-d 

z=o n=m+1 

For the terms in the second sum in this equation, we write 

1- - 01 
so that (3.40) becomes 

with the singular part gs given by 
g=gv+gs (3.41) 

g d Q )  = W f > ( A ’ Q > .  (3 .42)  

Since it is a sum over all integers 1, gs is a generalised homogeneous function, 
obeying 

gs(Q) = b-dgs(b2/Q) 
with y =In bh. Hence it is of the form 

- m  

(3 .43)  
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where A,* are amplitudes of the nth oscillatory term and & refers to the sign 
of Q. 

The  possible existence of oscillatory terms was noted by Wilson (1971a, b); 
see also Nauenberg (1975). Although we cannot eliminate them a priori if only 
one RG transformation is used, they are absent in formulations of the RG in which 
p in (3.22) can vary continuously, and even in the present formulation they are in 
practice negligible. We examine therefore only the n-0 term. Then gs reduces 
to 

with 

T o  obtain (3.45), 
change integration 

i r m  

(3.45) 

perform an inverse Fourier transformation in In Q on (3.43), 
variable to T = A l  I Q I in the Eth term, and note 

00 

1 jfcl,dT=j$ dT ( I (E)=[Al ,  h l + I ] ) .  
1 = - 9  

The integral in (3.45) is convergent at T = 0 from the definition off> in (3.38) and 
(3.39). The behaviour as T+CO is governed by the behaviour offo(AlQ) as AlQ-+a3, 
i.e. Z--+co. After a large number of iterations, a system not at its critical point tends 
to a fixed point at T = 0 or T = CO. In  each of these limits f o  will have same definite 
value and sign. The convergence of the monotonic sum X b-ldf~(AlQ) (equations 
(3.34) and (3.35)) implies the convergence of the integral J’; dT ~ - - ( 1 + d ’ u ) f 0 ( ~ ) .  

Since 1; dT ~ - ( l + d ’ Y ) f < ( ~ )  converges, according to (3.38) and (3.39), then (3.45) 
also converges at infinity. 

The  case h k = b d  for some integer k has to be treated separately because (3.37) 
becomes ill-defined. T o  handle this situation let us suppose we have A -  E as an 
eigenvalue ( h k = b a  with K integer) and then take the limit E-+O+. The 0 ( 1 / ~ )  
term in gr is now cancelled by a similar one in gs. First, since y = l n  b(A- E ) ,  we 
have 

4- O( € 2 ) .  
k E = k +  - 

d 
y hlnA 

(3.46) 

Next, the behaviour off>(.) at large T will be - Ck~k since k is now the maximum 
power inf< (cf (3.38)). So let us define an amplitude which will be finite at E = O  by 
(for Q>O): 

I 

where 6(x) = l(0) for x > 0 (x < 0). Now 

gs=AQk+O(E)+Qk In Q + O ( E ~ ) )  in7X--E)(F1-di3)). c k  (3.48) 

The denominator of the last factor is, in fact, - (ht/A)(l + E/~A) .  Meanwhile, in g,. 
the n=K term is just 

CkQk[l - ( A -  ~ ) ~ b - d ] - l =  C k Q k ( $ ) (  E 1 + $(k- 1) E +  A O ( E ~ )  ) (3.49) 
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so that g = gr i- gs is finite in the E-&+ limit, i.e. 

(3 .50)  
la#k 

Since k is an integer, we remark that the power singularity in ( 3  $45)  has become a 
logarithmic one here. 

Finally, if A= 1 (marginal), then higher orders in q are required to determine 
stability of the fixed point. Additional logarithmic factors violating scaling appear 
in this case (see, for example, Wegner 1972a, Wilson 1975). In  numerical calcula- 
tions on a lattice this case is rather rare, but see $46.6 and 6.8. 

3.2.1.2. The case of several scaling fields. The generalisation to the case of many 
scaling fields is immediate. Being regular fo may be written as 

( 3 . 5 1 )  
and 

gr = Cnl, n Z ,  . . . ( 1  -b-'n A,.;)-' n Qan5 (3 .52)  
a a 

with 
m 

l = - m  
gs= b-'lf>(X~'Ql, XZ'QZ, . . ) (3 * 5 3 )  

where f=. is the sum ( 3 . 5 1 )  over only those n for which 

( 3  * 54) 

in generalisation to (3.39(a)).  Now, g, satisfies (3 .22)  with 

p = b  yo=d  ya=ln bAa Xa=Qa. 

As before, in order for g, to exist, there must be at least one relevant variable, 81 
say (otherwise no set of na will satisfy (3 .54)) .  T o  put g, into the form (3 .44) ,  we 
will need an amplitude which is independent of the scale transformation yet de- 
pendent on the variables &, . . . . This property can be easily realised by first 
defining the scaling variables-ones that are independent of scaling : 

Va 5 Qa 1 Q1 I -Ya'Yl a 2 2 .  ( 3  * 5 5 )  

T o  obtain the desired amplitude (a generalisation of equation (3 .45))  we use these 
variables in dealing with the integrals over the intervals [XI, ;11l+1]]. The integrands 
are, in fact, independent of 1, since 

;\laQa= [AlffalY1]gVa IQ1 I Y d Y l =  [ A l l  1 Q1 l ] Y a / Y I V a =  Vas!JrrlY~, 

So we finally find that 

is indeed scale-invariant, being a function only of the V. The subscript 1 on the 
amplitude reminds us that Q1 out of all the relevant variables was the one chosen 
for casting gs into the form of 

ga(Q1, . )= 1 Q1 I "Y~AI+(V~, - . )- (3 .57)  
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The  phenomenon of universality, considered intuitively in the previous sub- 
section, can now be derived. Suppose we have a fixed point with only one relevant 
variable (i.e. y a  < 0 for a 2 2). Then as we approach the subspace of couplings defined 
by Ql = 0, Va becomes as small as we please, for any finite Q a  (a 2) .  AI* approaches 
A& considered before, which is independent of the set ( Q a } .  In  other words, we 
have a universal behaviour when Q1 is small. 

Further, according to the definition off, using (3.54), the integral in (3.56) 
remains convergent at T = 0 and T = CO when f is expanded in powers of V2, V3, . . . . 
So AI* is expandable in a Taylor series about Q a = O :  

AI*( V2, . . . ) = A1*(0) + Vz’zA1; 2* f . . . (3.58) 
where 

(3.59) a 
AI; &= --- AI& I {V}=O* a Va 

This expansion produces corrections to the most singular behaviour of gs : 

gs(Q1,. . . ) = A ~ ~ ( o ) ~ Q ~ ~ ~ ~ ~ l f 0 z ~ Q ~ ~ ~ ~ - ~ ~ ~ ’ ~ ~ A , ; Z ~ +  - . . . . (3.60) 

(Remember y z ,  . . . CO.)  As criticality is approached, the most important correc- 
tion comes from the term with largest Ya, no matter how small (but not equal to 
zero) the corresponding Q a  is. 

If p( > 1) relevant variables are present, then criticality is the subspace with 
{QI, . . . , Qp)=O and the ‘critical region’ is a region in which they are all small. 
Thus, we must keep the variables V2, . . . , V p  (if we choose to extract 01) in order 
to describe the behaviour of g in this p-dimensional (critical) region. Universality is 
expressed by the fact that in the critical region 

A ~ * ( v ~ ,  v2,. . . ) -+A~*(V~,  vZ,. . . , vP, o , o , .  . . )  (3.61) 

which is independent of the parameters Qp+l, . . . and universal up to the choice 
of units for 81, . , . , Qp. 
3.2.1.3. Scaling laws and equation of state. As an example, we consider g as a function 
of the relevant variables H and t ,  with eigenvalues  by^ and bvt. Of course, H and 
t are not necessarily the non-linear scaling fields Q, but by symmetry under H-, -H,  
they may be taken as the linear scaling fields p. Since in the critical region we can 
neglect terms of order q2 in Q = q f  O(p2), we write the singular part of g as 

gs(H, t) = &*(t 1 HI -I/&) I HI d ’ q ~  (3.62(a)) 

where 

T o  obtain the exponent p ,  we note that the spontaneous magnetisation M = 8gjaH I H-O 
has a singular part in - t :  

i.e. 
M .c( - t ) ( d - U d / f f t  

p = (d  - Y H ) / Y t .  (3.63) 

Further discussion of the existence of spontaneous magnetisation is given by Niemeijer 
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and van Leeuwen (1976). The divergence of the susceptibility x= BM/BH is given 
by xcc I t 1-7 (H = 0): using (3.62(b)) again, one has 

(3 .64)  y = (2YH - d) / y t .  

The exponent 6, defined by HccMg at t=O,  is similarly 

6 =yH/(d - -YH) .  ( 3  .65) 

Finally the specific heat exponent, a, can also be obtained from (3.62(b)):  

= 2 - d/y t .  
The scaling laws 

( 3 , 6 6 )  

a+2p+ y = 2  a+j3(6+1)=2 Y = N S -  1) A = p y  (3 .67 )  

are therefore satisfied. Note also that, for a simple fixed point with the regularity 
properties assumed above, exponents are the same above and below T,, because 
the value of A, is independent of the sign of Qa (but see the discussion in 56.1.3). 

Fixed points with more than two relevant variables describe multicritical points. 
The  amplitude A in (3 ,61) ,  called the crossover scaling function in this case, can 
describe the crossover towards a more stable critical fixed point. Examples are 
given in 96. 

Finally, we remark that it is straightforward to obtain a form of the scaling equation 
of state (Widoni 1965, Domb and Hunter 1965): 

H = Mbh(t/MIJb) ( 3 - 6 8 )  

by taking a/aH of (3 .62)  to obtain M. Note that we have dropped F symbols here 
(as may also be done in equation (3 ,62(a))  because H is a regular function of t at 
fixed M (Lebowitz and Penrose (1968); see Griffiths (1972) for a review of analyticity 
properties and BrCzin et al  (1973b) for a discussion of regularity in the context of 
the RG). 

3.2.2. Correlation functions. In  the previous subsection, we considered the free 
energy and its derivatives, which are related to specific correlation functions as in, 
for example, equation (2.6).  The treatment of arbitrary correlation functions using 
RG methods on a lattice is rather complicated. We give here only a brief review 
and refer the reader to Niemeijer and van Leeuwen (1976) for more details. The 
formalism in field theories is simpler (see 55). The main early reference to pheno- 
menological scaling in correlation functions is Patashinskii and Pokrovskii (1966). 

The most direct way to derive relations like (3 .30)  for correlation functions is 
to add ‘source terms’ equivalent to a spatially varying magnetic field, and consider 
the Hamiltonian 

3- Hmsm ( 3 , 6 9 )  
m 

leading to the free energy 

G(K, {Hm))= -In 1 e x p ( - X +  x H m s m ) .  (3.70) 
{ a )  

Derivatives of this function generate all correlation functions of s: 

G(P)(ml, . . . , m,; K ) =  - @G/(aHml . . . aHm,) I{AiEO. (3.71) 
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For example 

gives the two-spin correlation function. 

G(2)(ml,  mz; K )  = (SmlSma) - (SmJ(Smp) (3.72) 

Since we are interested in ‘small’ {HvL} ,  let us write 

G( K,  ( H m } )  = G + AG (3 * 73) 

where G is just (3.23) and AG contains the dependence on (“1, so that G(p) is 
the derivative of AG. Following $3.2.1, we have G ’ + A G = G + A G ,  i.e. 

AG‘ = AG (3.74) 
where AG‘ contains: 

(which is extensive insofar as there are N H m ) ;  

complicated form but let us assume to begin with that it looks like 

( a )  The additional spin-independent part of #’, which we denote by A o ( { H m } )  

(b)  The additional spin-dependent part of #’. This will in general have a 

with 
- c H;% 

HJL‘ = HI,‘( ( H m } ,  K )  (3.75) 

in analogy with (3.69). The formalism for the general case will be outlined later. 
When differentiated with respect to H,,‘, the (b)  part of A G  produces 

G(p) (VI, . . , , ,up; K’ ) .  Differentiation of (3.74) with respect to Hna leads to relations 
for G(@ like (3.30) for g. In  particular, let us consider the case p = 2 .  (W’e now 
drop this superscript on G@); no confusion with free energy G should arise.) 
Defining 

and 

(3 -76) 

(3.77) 

we have 

C(m, n ;  K ) +  1 G ( p ,  V ;  K’)TmPTn”+ C G(l)(p;  K’)Tmn/‘=G(m, n ;  K ) .  (3.78) 
/‘. 9 I‘ 

T o  simplify the discussion further let us assume that 2 is even under sm+ - sm 
(e.g. contains no external field). Then H,‘  is odd in H,, and TmnF vanishes, Equation 
(3.78) reduces to 

G(m, n ;  K ) =  C(m, n ;  K )  + G(p, v ;  K’)TmFTnv, (3 I79) 
P V  

This recursion formula for G is rather similar to that for g .  The analogy for a 

(i) Rewrite (3.79) in terms of Fourier transforms. One obtains 
translation-invariant system can be made explicit by two steps. 

G(k; K ) =  C ( k ;  K ) + b - - d T ( k ;  K ) T ( - k ;  K)G(bk;  K’ ) .  (3.80) 

The notation is as follows. Associate site m ( p )  with a position vector Ym(Pp) in its 
respective lattice structure with spacing a(ba). Site p can also be measured with 
respect to the lattice with spacing a, by rP say. Clearly 

r,-G=b(P,- P J ’  ( 3 . 8 1 )  
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The Fourier components in ( 3 .  SO) are defined for a translation-invariant system 
(G, etc, depending only on dayerences r ,  - r,) by 

NG(k;  K ) =  G(m, n ;  K )  exp [ik.(rm-rn)] (3 * 82(a)) 

NC(k;  K ) =  C(m, n ;  K )  exp [ik.(rm-rn)] (3 8 V ) )  

(3 * 82(cN 

m, 

m, 12 

N'(?(K; K ' )=  C G(p, v ;  K')  exp [ix.(pm-pn)] 
Id, v 

and 

Then (3.80) follows using (3.81) and N'jN = b-d ,  
(ii) Rewrite the K dependence in terms of the fixed point and scaling variables, 

In  the same spirit as the discussion at the end of 52.3.1, used extensively in the 
previous subsection, we assume that the functions C and T are regular in K close 
to the fixed point and in addition of short range, so that C and T are regular in k .  

First consider (3.80) at the fixed point K$'=Ki=&*, so that we can drop this 
argument from the equations. ;l'(k) can then be absorbed into a redefinition of 

and C. as follows. Note that r f (0)  is just a magnetic eigenvalue, since it is just 
8H'jaH I K=K*; 
Define a function #(k) by 

T(0)  = bYH, (3 I83) 

#(bk) = b-Yd(k )# (k )  #(O)= 1 .  (3.84) 

Given ;l' which is assumed to be Taylor-expandable: 

b-yir T ( k )  = 1 -t- 7i1 . , . ipkzl . . . kz, (3.85) 

one can write an explicit solution for #: 
+(k) = 1 3 . 1  ai1 . . , iPkZl * * At ,  (3 86(a)l 

with 

and 

we see that (3.80) can be written 

Following precisely the analysis for the free energy g, we infer that the singular 

(3.89) 

where d is a critical amplitude similar to A for g (cf (3.44) and (3.45)). Since 

part of g(k) (around k - 0 )  has the behaviour 

s,(k) =d I k I d-2?JH 
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?9 and G are related by (3.87(a)) and 4 is regular at k=O, we obtain a singularity 
in G: 

e,(k)  =d I k I d-2yH. (3.90) 

Fourier transforming back to G(m, n),  this implies that as Ir, - r ,  I +CO : 

G(m, n) -  lrm--r,I-2(d-~~), (3.91) 

Using the definition of q in 

we infer 
(3.92) 

(3.93) 

This result and (3.65) imply the hyperscaling law of Fisher (1967a, 1969): 

6=(d +2-7)  (d-2+?)-1. (3.94) 

For a system not at criticality we have at least one relevant temperature-like 
scaling field, which we again call t( - T - Tc).  Following the analysis for g(Q1, Qz), 
the amplitude will now be a function of t I k I -Yt:  

so that 
(3 * 95) 

(3.96) 

T o  extract the exponent v from this equation, we need a definition of the correlation 
length 6. It may be defined, for example, as an average correlation range: 

((/lattice spacing)2= m2G(m, O)/C G(m, 0) 
m nz 

or by the position of a singularity of .d* (in the complex plane): 

In  both cases, 

so that 
(3.97) 

(3.98) 

a result arrived at earlier (equation (3.12)). 
Thus we see that, after Fourier transform, the analysis of scaling behaviour for 

correlation functions can be done by analogy with scaling of the free energy. Scaling 
laws and formulae for scaling functions, such as . d ( t  Ik I -Yt), can be derived. Further 
remarks are in order. 

(i) I n  obtaining (3.96), apart from assumptions of regularity, etc, we made one 
assumption which is certainly not true, i.e. that the new interaction induced by 
X,,LHnLsm is of the form XtH,'u,; in general, three-spin and higher interactions 
are also present in S'. This complication is handled by extending the notion of 
scaling fields Q a  to wavevector-dependent fields Qa(k), transforming as 

Qa'(bk) =bYaQa(k) .  (3.99) 
These are obtained by perturbing away from the fixed point with space-varying 
interactions St, m, of cluster type i located by site m, so that 

a.&, pl E Mi ' C  i p  m(K")6Kj, m. (3.100) 
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Given a translation-invariant fixed-point Hamiltonian (K*)  we can diagonalise M 
in (3.100) after Fourier transforming. The  (k-dependent) eigenvectors can then 
be extended to non-linear scaling fields Qa(k). The two-spin correlation function 
aaG/aHmaHn can then be written as a sum over correlation functions involving 
scaling operators, i.e. as a sum over @G/8Qa(k)@b(k). Each of these terms will 
scale as in (3.89) with the appropriate power Ik I d - y a - g b .  The dominant term for 
low jkl will be that for largest ya+yb, i.e. for the dominant magnetic exponent 
y ~ ,  and the previous result (3.90) remains. Details are given in Niemeijer and van 
Leeuwen (1976). 

(ii) Similar analysis can be given for correlation functions involving many spins, 
and products of, for example, nearest-neighbour spins, corresponding to energy 
density correlations. 

(iii) The  discussion of correlation functions in field theories can be much simpler 
than in lattice models. It is possible to have the field variable +(x) (analogous to 
sTn) as a scaling interaction, so that RG equations for different correlation functions 
of +(x) are decoupled (as we have assumed initially to obtain equations (3.91) and 
(3.96)). Formal scaling properties in the presence of a magnetic field and below 
Tc are also simpler to discuss in field theory (see $5 and the references in $6.1.4). 

(iv) Let us consider the regularity properties of the two-spin correlation function: 

where 

s (k ,  t )  = / k  I --2+Xdk*(t Ik I -ut) (3,10l(a)) 

= t -rdt*(  Jk I J t I -1'gt) (3.101(b)) 

y = (2 - q)/yt = v(2 - 7). (3.102) 

B is given in terms of the Fourier transform of G(m, a), up to regular terms in k2. 
Away from a critical point G(m, n) has finite range and so in the Fourier transform, 
exp [ik.(rm-r,)] may be expanded as a power series in k(rm-rYn), the sum on 
(m-n) for each term being convergent, i.e. s (k )  is regular in Ikl away from a critical 
point. Hence de* in (3.101(b)) is regular in its argument. 

Let us consider however the amplitude d, in (3.10l(a)). So far in this review 
the variable with respect to which the amplitude is defined has corresponded to a 
perturbation away from the critical point, e.g. the variables H and t in (3.63(a) 
and (b) ) .  Given that the system is already away from its critical point, we expect 
to be able to make regular perturbations in other variables according to the qualitative 
arguments in $3.1 and the explicit calculation in $3.2.1. However, in (3,10l(a)), 
s (k ,  0) represents a system at its critical point and there is no basis whatsoever for 
assuming that the perturbation in t will be regular, i.e. d k  in equation (3.lOl(a>) is 
not in general a regular function. 

The operator product expansion (Kadanoff 1969, Wilson 1969) enables one 
to obtain the low t behaviour of d&, The basic idea is that for tlkl-ut small, i.e. 
jrm - rn I < f ,  the product of operators of the type Om', the Fourier transform of 
the interaction conjugate to the scaling field Qa(k), can be expressed as a sum over 
such operators times coefficients which are functions of (Vm - rn)  : 

(3.103) 

The critical exponents of the scaling fields then determine the power of ( p m - r n )  
in Cca*(r, - rn). This approach has been strongly developed in field theory: Zimmer- 
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mann (1971, 1973a, b) and Brizin et al (1976a) contain further references; see also 
Kadanoff (1976a). A typical result is 

where a, the specific heat critical exponent as in equation (3.66), arises because the 
operator containing the energy density appears in the right-hand side of (3,103), 
behaving like 8g/atN tl-a, 

(v) Universality properties for correlation functions can be discussed by the 
same method used for the free energy. 

Finally, we emphasise again that although we have talked in terms of free energy 
and correlation functions near a critical point, one may envisage calculations of 
analogous physical quantities using the RG in other many-body problems. In  general 
the physics need not be dominated by fixed points and scaling, of course. 

4. Real-space methods in lattice models 
4.1. Introductory remarks 

4.1.1, Lattice and field models. The preceding sections deal with ideas and general 
formalisms. We now present some details on some of the methods for calculating 
the transformation functions ft( K ) .  

There are basically two approaches, complementary in a number of ways. The 
lattice methods, the simplest example of which was presented in $2.3.2, have the 
following advantages : (i) conceptual and technical simplicity, (ii) validity in any 
integer dimension d, in particular d = 2  so that comparison with exact results is 
possible, and (iii) ability to calculate non-universal quantities of interest, such as the 
critical temperature T,, and behaviour over the entire temperature range without 
concern about the ‘size’ of the critical region. 

In  the field theoretic approach one works with a field, i.e. a continuous spin 
density, rather than the discrete spin variables of, for example, the Ising model. 
The advantages are (i) existence of powerful well-developed tools in field theory, 
(ii) easy identification of d,, the critical dimension below which mean field approxima- 
tions fail, (iii) ability to continue analytically in dimension to obtain E expansions 
in d, - E dimensions, (iv) simplicity of the fixed-point Hamiltonians, and the analysis 
of perturbations about these fixed points and crossover phenomena, (v) analytic 
structure in other parameters of the theory, e.g. n, the number of components of the 
field (spin) and, more recently, (vi) calculation of critical behaviour and T,, for 
Heisenberg-like models, near the critical dimension above which Tc > 0. 

Due to the simplicity of the lattice methods, a self-contained presentation of the 
general formalism and some successful examples can be accommodated in some 
detail. By contrast, it is beyond the scope of this review to give such an account 
of field theoretic methods. Instead, we attempt only to give the newcomer some 
notion of the vocabulary and the approach. Remarks on the relationships between 
lattice and field models are contained in the discussion on field theories in $5.  

We deal only with Ising-like models here; applications to other models can be 
found in $6. 

3 
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4.1.2. General formulation. The simplest example of a renormalisation group 
transformation was given in $2.3.2: decimation. There is, however, a major flaw 
to this method, which will be discussed later. To incorporate more generally the 
central idea of reducing the 'density' of degrees of freedom one introduces a set 
of new spins U with larger lattice spacing than s and defines a new effective Hamiltonian 
J f T O )  by 

exp ( -  %'(U)) = W(o, s) exp ( -  ~ ( s ) )  (4.1) 
{SI 

where W(U, s) is any function of U and s such that 

W(u, s) 2 0 for all U and s. 
(i) &"(U) remains real, a sufficient but not necessary condition for which is 

(ii) c W(a, s)= 1 ( 4 4  

Z -  C exp(-*')= e x p ( - x ) .  (4.3) 

{ 01 

so that the partition function for the new system is the same as before: 

{ G I  {SI 

(iii) General, qualitative features (e.g. symmetries) of physics are retained. 
The  last point is rather vague but extremely important. Apart from obviously 

bad choices, e.g. ones that do not respect translational invariance or rotational sym- 
metry of the original system, we would like to emphasise the point by illustrating 
other pitfalls. In  principle, there is nothing to stop one from choosing U to take 
on, say, three values (i- 1, 0). But such a system may display qualitative features 
drastically different from the spin $(s = ri: 1) Ising model, e.g. tricritical phenomena 
(see $6). The  consequence of such a choice is that one might be led io behaviour 
totally unrelated to the original system. Another example involving ferromagnetic 
and antiferromagnetic fixed points was discussed in $2.3.2. Further examples are 
described in van Leeuwen (1975) and Burkhardt and Knops (1977). 

There are many more subtle difficulties. For example, in straightforward 
decimation, either 7 = d - 2 or no fixed-point Hamiltonian (%*) exists. This conclu- 
sion comes from considering the pair-correlation function G(2) at the critical point 
(equation (3.72) with (s) = 0) : 

~ ( 2 )  E (snsnl) [ 1 snsm exp ( - %($))I /z. (4.4) 
is) 

Choose sn and sm to be survivors of the decimation so that, in the new system, they 
are just U,, U/'. With this choice, in (4.4) the configuration sum over the decimated 
spins, {C} can be done: 

Since 2 remains the same, we have 

(snsnz) = (U,U,). (4 * 6 )  
At the critical temperature, for large separations, these behave like A I n - m 1 2 - & - ~  

and A' I v-  p 1 2-d-q respectively. Suppose an a?* exists, then P= 2' = %* leads 
to A=A'=A*. On the other hand 

I n - m l - b l v - p ]  (4.7) 
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where b is the ratio of the new lattice spacing to the old. Putting these equations 
together, we obtain either G(~)*KA* = 0, which is absurd, or 

b2-a-7 = 1. 

Since 7 is not, in general, 2-d, we conclude that if a decimation transformation 
were performed exactly, no non-trivial GX?* will be reached. 

Another difficulty is associated with the possible existence of redundant inter- 
actions. These may arise because we permit GX?(s) to be in principle an arbitrary 
function of s and parametrise it by a set of coupling constants & as in equation 
(3.1). I n  general, however, this appears to be an overcomplete specification in the 
sense that for any given fixed point Kt* there may exist a whole manifold of physically 
equivalent fixed points. This point was first appreciated in field theory (Wilson and 
Kogut 1974 (last paragraph in the appendix), Wegner 1974a, 1976, Zia and Wallace 
1975a). An example in decimation in a lattice model is given in $4.2.1 (Bell and 
Wilson 1974, Wilson 1975, T L Bell unpublished; see also Subbarao 1976a). After 
approximations are made in lattice calculations, the redundancy may not persist, but 
undesirable effects such as spurious relevant interactions may possibly remain (see 
also Green 1977). 

Apart from these general problems, in practice, one must choose W(u, s) in 
such a way that the configuration sum over {s} can be done in some approximation 
which produces an GX?* about which linearisation may be done. Typically, a 
factorisable form is chosen: 

(4 * 8) 

W(u,  s)= n W(%, Sn) (4.9) 
v, WJV 

whereN is a set of b d  sites 'surrounding' the new site v.  Note that (4.9) incorporates 
translational invariance. A successful scheme proceeds from here by deriving 'good 
approximations' to the recursion relations. I n  the following, we present three of a 
number of such schemes. 

4.2. Spec@ schemes 

4.2.1. Kadanofl- Wilson decimation. T o  circumvent the difficulty of 7 = 2 - d in 
simple decimation, L P Kadanoff (unpublished), Kadanoff and Houghton (1975), 
Bell and Wilson (1975) and Wilson (1975) generalise the procedure by choosing 

40,, Sn) = 8(1+ PU,sn(s)) (4.10) 
where p is an arbitrary parameter to be determined and n(v) labels the surviving 
site in the simple decimation scheme (which corresponds to the choice p =  1). Before 
looking at some results of this approach, let us make several general remarks about 
this choice. 

A general feature of decimation, like schemes such as (4. lo), is that for the 
fixed-point Hamiltonian new correlation functions are proportional to the old: 

Z (  oP1 . . . U,,,) = 

= uP1. . . U , , ~  n +(l+pus) exp (-**(s)) 
8 )  
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RG transformations with this property are called linear transformations. The pro- 
portionality factor p k  now saves us from the 2-d disaster. If we run through the 
arguments concerning the pair-correlation function again, we find (4.8) modified : 

p2b2-d-t = 1 (4.11) 
so that a non-trivial G(2) exists only if we choose a special value of p ,  p* say, obeying 

p" = h b1+d-2)12. (4.12) 
(In most cases p* > 1 so that W(u,  s) 2 0 (see 54.1.2) is no longer automatic.) 

family of them, (Wilson 1975): 
Analysing further, we find that if an exact 2* exists, then there is a one-parameter 

(4.13) 

where the product, unlike decimation, runs over all sites. We have therefore an 
example of redundant interactions. T o  show that .%'A* is also a fixed point of the 
generalised decimation we employ the identity 

c n &(I +hT,U,) n d(1  + $ " ~ , S T L ( , ~ , ) -  
{U} " P It) v m 

so that 

n ;(1+p*T$n(,)) n Q(1 +Ab$" 
(4.14) 

exp ( -  P,,*(T)) = n a(l +  TU) exp ( -  &*(U)) 
{ 4 

= 1 n $( 1 + ha)( 1 + p"us) exp ( - X * ( s ) )  

= c I7 g(l + p * ~ t ) ( l +  Xts) exp ( - p * ( s ) )  

= 1 n $(l + p * ~ t )  exp ( -  HA*(t)). 

( , J , 8 }  

it, 8 )  

(4.15) 
It1 

The consequence of such a fixed line is that, in an exact calculation, p* should come 
out to be independent of the .%'* parametrised on the line by, say, the nearest- 
neighbour coupling K". I n  practice, approximations to the recursion relations 
induce a non-trivial dependence p*(K*). 

We now present the typical approximation schemes. I t  is obvious that the 
5" = 00 (or non-interacting) Hamiltonian is a fixed point: E* = 0. Thus it is reasonable 
to try an expansion about this point (K=O), i.e. a high-temperature expansion. 
For definiteness, let us concentrate on a square lattice and consider a decimation 
whereby one site out of every b x b block survives. Carrying out the transformation 
specified by (4.11)) we write down the first few new interactions to the lowest non- 
trivial order: 

K'=p2Kb( l+  O(K2)) 

M' =: p 2 k ' y  1 f O ( K 2 ) )  

N' = p i (  ?)K 3 y i  + o ( K ~ ) )  (4.16) 

where L'(M', N ' )  is the new next (next-next, next-next-next) nearest-neighbour 
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coupling and the binomial coefficients count the number of shortest paths between 
the relevant new sites. Being a systematic expansion, it can be used as a basis of the 
approximation scheme where terms up to a certain order are kept. T o  find the fixed 
point, L,  nil, N ,  etc, type terms are needed on the right-hand side of (4.16) for 
consistency. For example, if we wish to keep K4 terms with b=2, the necessary 
equations are 

K'=pz(K2+ (16/3)K4+ M )  L' = 6p2K 4 M'=PZK4. (4.17) 

The serious pursuer of such a programme should use the variables tanh K,  etc, 
where combinatorics simplify considerably. 

We summarise now Wilson's (1975) work. He chose to decimate every other 
spin on the two-dimensional square lattice, leading to b = 2/2. Keeping only the 
lowest orders, K 2 and L (the next-nearest-neighbour coupling), the recursion 
relations 

K ' = pZ(2K- 2 + L )  (4.18) 

lead to 
(4.19) 

(4 20) 

This relatively strong dependence p*(K*) is the result of the approximation. Im- 
provements are possible by including a larger number of interactions involving 
clusters of spins. Going to fairly high order Wilson succeeded in finding a p# which 
varies little with K", in contrast to (4.20). These calculations are quite tedious, 
though straightforward in principle, so that computers are used. Referring the 
interested reader to the original paper for any details, we simply quote the excellent 
results : 

7 = 0,2497 v = 0.998 (4.21) 

for a range of K* around 0.3. Note that these K" are not to be confused with the 
exact Kc 2: 0.4409. The recursion relations take the latter point ( K  = Kc, 
0= L = M =  . . . ) to some point on the fixed line Z,,". 

A less ambitious scheme is to fix p" by the exact 7 =  &. Then one can ask what 
are K" and v in some approximation. For example, if we wish to go beyond lowest 
order without introducing an L interaction, we can use a 3 x 3 block. Writing 

w = tanh K ,  etc (4.22) 

the recursion relation up to w5 is 

U'= 31'403(1+ 1 2 ~ 2 )  

U" N 0.46. 
from which we get 

(4.23) 

Within our approximation, this lies on the K axis, so that we can compare it 
with 

wexact N 0.414. (4.24) 

This is in reasonable agreement, considering how crude the approximation is. The  
exponent v is poor: 0.74 (cf vexact=l). Not to be taken completely seriously, this 
simple example nevertheless illustrates the basic ideas behind the programme. 
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4.2.2. Niemeijer-van Leeuwen cells. A particularly appealing choice of the weight 
factor was introduced by Niemeijer and van Leeuwen (1973, 1974): the sign rule. 
Divide the lattice into cells (labelled by p) of b d  sites and define each new cell spin 
bY 

(4.25) 

whereN(p) is the set of sites in cell p. Note that, unless b d  is odd, some convention 
must be made to make (4.25) well-defined. We also mention in passing that for a 
d-dimensional hypercubic lattice b d  must be a sum of d squares: 

d 

i=l 
b d =  ni2 ni integer 

(e.g. 6 = 4.5 in d =2) if the lattice structure is to be retained at the cell level. 
The  choice (4.25) is most natural for the two-dimensional Ising model on the 

triangular lattice where a cell can be just the three-site cluster. In  this case, every 
site can be labelled by (i, p) with i = 1, 2, 3. (We suppress the cell label whenever 
it is clear.) The  weight factor is, for each cell 

w( U, s) = $[ 1 + $ U F ( S l  + sz $. ss - SlSZS3)] * (4.26) 

Due to the presence of the S ~ S Z S Q  term, correlation functions of U and s are no longer 
linearly related. This is an example of a non-linear transformation: troubles with 
7 = 2 - d  do not arise. 

T o  proceed efficiently, the configuration sum {s) of any function of s, A(s), with 
this weight factor may be written as 

(4.27) 

where f takes on four values per cell: 

s= 1 U =  -s1=sz=s3 

s= 2 u=s1= - sz=s3  

S= 3 u=s1=sz= -s3 

5= 4 U =  SI = sz = s4. (4.28) 

With these definitions, s~(u, S) = (1-26&. (Note that, together with the two values 
of U, the eight configurations of s per cell are retrieved.) 

As with any scheme, approximations are necessary for arriving at simple enough 
recursion relations; the configuration sum in (4.1) is no more ‘do-able’ than the one 
without W(U, s). Here, there are three main types of approximations: (a) finite 
lattice, (6) cumulant expansion, and (c )  cluster approximation. 

(a) The simplest procedure is to take a finite lattice (of cells). For example, 
Tjon (1974) took the symmetric four-cell lattice in figure 7. Nearest neighbour, 
second neighbour and four spin couplings can be accommodated at the cell level. 
The  RG transformation is defined by starting with these types of coupling at the 
site level and working out the required effective cell couplings by exact (or computer) 
analysis. Fixed points, critical exponents, etc, are then found by the usual methods 
of $3. 
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Figure 7. Finite lattice used by Tjon (1974); ‘X-ed’ triangles are cells. 

I t  should be emphasised that this RG transformation on a finite lattice is distinct 
from obtaining thermodynamic quantities directly for a finite lattice. This is seen 
in the comparisons (figure 8) of the specific heat for the exact result, this simple 
approximation and the 12-spin finite lattice. Improvements occur (Subbarao 1975) 
if larger lattices are used, but convergence appears to be slow. 

A variation of the method is to impose periodic boundary conditions. It is hoped 
that such conditions would reduce the spurious boundary effects and better ap- 
proximate the infinite lattice. When this idea was applied to the four-cell lattice, 
no non-trivial fixed point could be found (J A Tjon 1976, private communication 
(see Niemeijer and van Leeuwen 1976)). The dificulty probably lies in that the lattice 
is too small for the inclusion of important interactions, i.e. L does not exist since the 
periodic boundary conditions would make cells 1 and 3 nearest neighbours. 

Making a convention for the sign rule on a four-site cell, Nauenberg and Nienhuis 
(1974a, b), and Nienhuis and Nauenberg (1975) applied this method (with periodic 
boundary conditions) to a four-cell square lattice (36 sites). Now, L does exist. 
Critical exponents, the critical surface, free energy, specific heat and equation of 
state agree with exact results and series expansions to within a few per cent. 

( b )  The cumulant expansion attempts to deal with the infinite lattice. First, 
the Hamiltoniaq is separated into intra-cell interactions (Xo) and inter-cell ones 

%’= 80s v. (V>: 

* - - - - - - - - - -  

Figure 8. Internal energy and specific heat for the pure Ising system. Broken curve, exact 
solution; full curve, renormalisation results of Tjon (1974) ; chain curve, results 
for 12-spin lattice. 
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T o  be specific, let us consider a system with only nearest-neighbour interactions in 
an external field H :  

#o(S)= Ao(s, CL)= - (K %,9,,+H Si,& (4.29) 

Since exp ( - 20) factorises into products of exp ( - no) over cells, the configuration 
sum over (S }  can now be done explicitly: 

P P <&j) z 

(4.30) 
where 

Zo(a)= nZo(up)=  n [ e x p  (3K-t3HaP)+3 exp (-K+Ha,)]. (4.31) 
/I P 

Next, write 
W(0,S) exp ( - 4 = Zo(a)(exp ( - W O  (4.32) 

where we define the ( )o average of an operation 0 by 

(4.33) 

The average of an exponential is then expressed in the cumulant expansion: 

(exp (-V))O=exp (-(V>O+B(V~)O-~(VI)O~+ * .  .). (4 * 34) 

A systematic approximation scheme now emerges. 
As an example, let us consider the first approximation ( V ) O  when the external 

field H = 0. Since V consists of a sum of the inter-cell nearest-neighbour site bonds, 
it is clear that there will be only nearest-neighbour cell bonds. Referring to figure 9 

1 

2 3 

Figure 9. Inter-cell bonds 1-2 and 1-3 between cells p and v .  

we see that two terms in V contribute to the interaction between the cells p and v .  
I n  this case, all of the configuration sum {f> (equation (4.27)) cancels except 

which leads to 

R=exp (-4K). K'=2K (-1 1 + R  2 

1 +3R 

(4.35) 

(4.36) 

At this order, no other interactions play a role so that the non-trivial K* of the 
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transformation (4.36) may be compared with K ,  of the exact result (Syozi 1972, 
p280) : 

K * N 0.336 cf K ,  = (In 3)/4 N 0,274. (4.37) 

The comparison of the exponent v is more favourable: 

v 2: 0.89 (4.38) 
especially considering that this is just the first non-trivial approximation. It is 
easy to include the external field H and find 6. Unfortunately, 6 is extremely sensitive 
to small variations of the magnetic eigenvalue AH from the exact value of 315’16~2.8. 
Instead of comparing 6, we quote the result AH N 3.04. 

Of course, one can go on to the higher orders. Other interactions must be intro- 
duced and, though straightforward, the calculation becomes quite laborious. Nie- 
meijer and van Leeuwen showed that there are improvements at the second order. 
Hsu et a1 (1975) found, however, that the third-order results are worse than the 
second using a 3 x 3 block on a square lattice (see also Sudbs and Hemmer 1976). 

Another remarkable result was found by Kadanoff and Houghton (1975) using 
the cumulant expansion with a parameter (p)-dependent weight factor. Working 
with a 2 x 2 block on a square lattice, they modified the weight (cf (4.26)) in the 
spirit of (4.1 1): 

where p l  and p3 are related to the parameter p by 
W (  0, S) +{ 1 f a[(plf p3sls2s3S4)(sl -k S2 f $3 f s4)]) (4.39) 

(4.40) 

The motivation for this choice comes from the (un-normalised) weight of exp 
(Pa s i ) .  

If one could solve the exact recursion relations, the resultant exponents should 
be independent of p .  Instead, at the second-order level of the cumulant expansion, 
there is a dependence of, say, on p. The  choice of p is then fixed by another de- 
pendence of 71 on p-a generalised version of (4.12). The result is a remarkable 
agreement to 0.4%. When this value of p is used to determine v, the agreement 
is a phenomenal 4 parts in lOs! 

(c) Although both are successful, it is difficult to understand the basis on which 
either of the above schemes work so well. The  finite lattice methods are not systematic. 
The  cumulant expansion, apart from questions about convergence, should be good 
only for small K,  yet K” is not small. Thus the cluster approximation is developed 
to avoid being restricted to finite lattices and to exploit the fact that only K X  seems 
to be of the order of unity. 

Though not difficult conceptually, the combinatoric technical details are beyond 
the scope of this review. We attempt to present the gist of the approximation and 
the best results obtained so far. 

For definiteness, let us concentrate on the nearest-neighbour interaction K’ ; 
the general method applies to any interaction in fact. If we calculate a particular 
K’ using a finite cluster a of cells (which includes the particular pair in question), 
then it depends on a:  K’(a ) .  But it is hoped that it will converge to K’ when a 
is taken to the infinite lattice. T o  express this property, we write the Ursell expansion 

K’= U ( C )  (4.41) 
C 
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where the individual terms can be obtained from K’(a) themselves : 

U(c)  = c (- l)c-aK’(a). 
ase 

(4.42) 

Clearly, the sets n and c must include the pair of cells in question, and a(c) is the 
number of cells in the cluster a(c). 

An approximation could be made by cutting the sum in (4.41) off at some point 
d, but this would just be K’(d) .  To be more systematic, choose c to be members 
of a class y of equivalent sets and approximate by cutting the class summation off 
at some Doint S: 

(4.43) 

Collecting (4.42) into (4.43), K’(6) is expressible as a sum of some combinatorial 
coefficient times K’(n). 

At the level of a seven-cell approximation, computer analysis shows agreements 
of 3% and 1% for U and r ]  respectively. Linear extrapolation from the fixed point 
to the K axis gives Kc to better than 0.5%. Convergence properties are also quite 
satisfactory, much better than the finite lattice method (Subbarao 1975) and the 
straightforward cumulant expansion. 

4.2.3. Variational methods. Kadanoff (1975), the instigator of these methods, 
considers the problem of approximations to the exact recursion relations and derives 
upper and lower bounds for the errors thus introduced in calculating thefree energy, 
G. Although directly measurable quantities are derivatives of G, which are not 
in principle bounded by the bounds on G, it is hoped that ‘pathological’ behaviour 
is absent and good results will appear nevertheless. This hope is in fact realised in 
a comprehensive analysis (Kadanoff et al 1976) in which excellent results are found, 
in d = 2, 3, 4, for many properties (see also Katz et aZ(l977) for interesting extensions 
of this approach to other values of d). We present here the general principles, one 
of the simplest realisations for the Ising model, and some of the results. 

The  free energy of a system (again in units of KT) is defined via the partition 
function (4.3) by 

G8{&‘} = -In exp (- &‘(s)). (4.44) 
is) 

The  subscript s and curly brackets show the functional character of G. The  RG 
transformation (4.1) can be written in such a form if we first use the properties 
of W(u, s) to rewrite it as 

W(U,  s) = exp [ - &U, s) + U(s)] (4.45) 

where A is an arbitrary (real) function of U and s and U(s)  plays the role of 
normalisation of W (cf (4.2)) : 

U(S)  = Gr{lfi>. (4.46) 

Following the notation of Kadanoff et a1 (1976) we use the hat symbol (-) to denote 
functions of both U and s. Defining 

R( U, s) = 2 ( s )  - U(s)  4- R( U, s) (4.47) 
we see that (4.1) can be cast into the form 

.“’(U)= Ga{R}. (4.48) 
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Furthermore, we obviously can retrieve %(s) by 

#(s) -- G,{i@} (4 * 49) 

so that the equality of the free energies of the U and s systems is clear: 

G,{%’}=G,, S{2}=Gs, , { ~ } = C ; ~ { % }  (4. SO) 

G,, s{~}~GG,{Gs{$)}. (4.51) 

Using this formalism, we proceed to analyse approximations 2-4, of A and 

(4-52) 

where 

Since G,, is nothing but -In Z{o,sle~p (n), it is the same as Gs, V s  

derive conditions for the positive or negative definiteness of the difference : 

4G= G,, a{$)- Gv, s ( 2 - 4 ) .  

The methods are standard: introduce the interpolating ‘Hamiltonian’ 

2* = 2-4 + XP 
p=$-$.n 

where 

so that 

Note also that 
4G=JA dX(a,G,, 

(4.53) 

(4.54) 

(4 9 55) 

exp ( - SA)] (4.56) 

and 
aA2G,, s { $ A } =  - ([B - (P)J2>A< 0. (4.57) 

Integrating (4.55) by parts once leads to 

AG= (P),,1 - JA dXX(8,zG). (4.58) 

Adding 8G/ahlol to the second term and subtracting it from the first gives 

AG=(B)A=o+Ji dX(l-X)(a,zG), (4 * 59) 

Since aA2G is negative definite, if we choose an approximation satisfying ( Q>,=I = 0 
(( P),,o = 0) then the approximate free energy will be a lower (upper) bound to the 
exact one. 

The  first-order cumulant of Niemeijer and van Leeuwen (1973), for example, 
provides an upper bound. T o  see this, we need to consider only one intra-cell bond, 
of which p (= V )  is a sum. First perform then 

(h, pq, J A = o ~  KslLsy exp ( - 2 0 ) ~  KsILsY exp (A,($, P)  + do($, 1))) (4.60) 
i s }  {a)  in 

cells P ,  Y 

which is zero for H=O or positive definite for H#O. In  the latter case, (4.59) is 
still negative definite. (Note that the average here (4.56) is over all {U, s}, not just 
{s} as in (4.3.9.) 

Noting that this upper bound does not provide particularly good results, Kadanoff 
explored the possibility of the other bound. Of course, in general, it is difficult to 
choose an approximation such that the average of P under the exact 2 vanishes 
((P),=1=0). Symmetry properties of 2 are exploited and $A is suitably chosen 
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so that P has properties ‘opposite’ to 9. Then ( 8 )  is automatically zero. T o  
illustrate this method we work with a specific scheme on the d - 2  square lattice. 
Generalisations may be found in Kadanoff et a1 (1976). 

The model under consideration will be defined by the interaction Hamiltonian 
for spins on a square lattice: 

D J Wallace and R K P Zia 

where q labels a square of unit lattice spacing squared (also called a plaquette) and 
i, j = 1, . . . , 4 are sites at the corners of a square. C, denotes the sum over all 
plaquettes. Since a site belongs to four plaquettes, each site can be labelled in four 
ways. Each pair of nearest neighbours appears in two plaquettes. Thus (4.61) 
corresponds to nearest-neighbour interactions of strength ZK, next-nearest-neighbour 
of K and a four-spin one of N .  Note that a constant is included in 2. In  Kadanoff’s 
lower bound approximation only these types of couplings are required. Further, 
the specific choice of u(s, q) in (4.61) is invariant under permutations of the spins 
in the plaquette. This property is reproduced under RG transformation by the 
choice of R in (4.62) below. Therefore the space of interactions (f, K, N )  is closed 
in this approximation. In  practice, such a Hamiltonian can be obtained from the 
standard Ising one KISS) by an exact Wilson-like decimation (cf (4.18)-(4, ZO)), 
giving 

exp (- O(S, q))  = 2 cosh K I  si, (I . 
Next we define the transformation with a parameter p : 

L ) 
(4.62) 

Figure 10. Possible configuration of red (R) and blue (B) cells on a square lattice for the 
variational method. 

where, with reference to figure 10, p labels the ‘red’ cells and the sites in each square 
are relabelled by the pair (i, p ) ,  U($) can be found via (4.46), a sum over p of ( p  
suppressed) terms 

4 

The coefficients are functions of p :  

where 
u f = h  2+12+14 UK = 14 U N =  14- 12 (4.64) 

12 = $ In cosh 21, and 1, = + In cosh 4p. (4.65) 
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Now 2 takes the following form: 

which we approximate by 

45 

( 4 - 6 6 )  

( 4 . 6 7 )  

where the summation is taken over ‘blue’ cells only, and uFC is the cell spin in the 
red cell to which S Z , ~  belongs. With the example in figure 10 this means 
p(Uls3+ U2S5f 03s6-k 174~7) (R, contains a,). Since a site appears once only in both 
( 4 . 6 2 )  and the last term in (4 ,67) ,  they are the same. 

The  choice of 2 A  is clearly motivated by the factorisable property of exp (- 2 A )  
into a product over f i  giving a closed RG transformation. Next, we analyse 
P = 2- 2 A .  Since Xq = Zc,+ X p +  Xw, where the last sum is over the ‘white’ (blank 
in figure 10) cells, 

P =  E(.-.)- ( v - u ) +  - p - z p .  
/1 7 w P 

( 4 . 6 8 )  

Note further that P is independent of U so that the ( U }  average in (P) is trivial and 
we get 

@)*=lK P exp (-- qs)). (4 a 69) 

Now #(s) is symmetric under the interchange of ‘red’, ‘white’ and ‘blue’ cells so 
that the contributions to (4 .69)  from the p, /3 and w cells in P are indistinguishable 
and add up to zero. This is guaranteed when we take the form (4 .67) ,  simply shunting 
all interactions in cells into the blue cells. Since this is true for any p ,  we can choose 
p to maximise G. 

Before quoting some results of Kadanoff, we give a summary of the procedure. 
Using ( 4 . 6 7 )  and (4 ,48) ,  we get the RG equations : 

{*I 

f ’ = f ’ ( p ; f ,  K ,  N )  

N ’ = N ’ ( p ;  K,  N )  

(4 * 70(a))  

(4 * 70(c)) 

K‘ = K ‘ ( p ;  K,  N )  (4..70(b)) 

with which one can find the fixed point #*(f”, K”, N * )  for each p .  Now the free 
energy G calculated with this Hamiltonian will depend on p through so that the 
stationary condition on G reads 

(4 .71)  

The second factor of each term is readily obtained from (4 .70) ,  while the first factors 
are proportional to the expectation values (over %*) of the operators 1, st, *s j ,  *, 
and T1i st, respectively. Alternatively, they are the elements of the eigenvector, 
with eigenvalue 4 ,  of the stability matrix at i@*, again obtainable from (4 .70) .  The 
critical indices are also calculated from that matrix. The  interested reader will 
enjoy the exercise of following this programme in one dimension (where it is exact) 
and on a triangular lattice, where analytic calculation (only nearest-neighbour inter- 
actions are required) gives results good to around 10%. I n  the square 2d model 
above, %* is found numerically for a range of p and there exists a j (=0.766)  for 
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which (4.71) holds. Furthermore, the d = 3 and 4 cases are also easily tractable 0x1 
a computer. With p* held fixed at the best value for the fixed point H*,  diagonalisa- 
tion of the stability matrix gives the remarkable exponents in table 1. (Strictly the 
best p will vary as Y? is perturbed from X * ;  when this is allowed results are sur- 
prisingly not quite as good.) Results for free energy, specific heat and spontaneous 
magnetisation are similarly excellent. 

Table 1. Values of exponents for the Ising model from the variational method (Kadanoff 
e t  a2 1976). Results in brackets are from: d = 2 (exact solution); d = 3 (estimates 
from series expansions); d = 4 (mean-field results) see 55. 

Dimensionality d 
_._ ___ . - . - . - __ - Critical 

index 2 3 4 

a 0.0017 

P 
(0) 
0.12457 

(0.125) 
Y 1.7491 

8 15.040 
(1 -75)  

(15) 

0.1132 
(0 *08 rt 0 *04) 
0.3243 

(0.3125 k0.005) 
1.238 

(1 '250 rt 0.005) 
4.818 

(5 * 0 f 0 2) 

However, we must finish with a word of caution. Burkhardt (1976) and Knops 
(1976) analysed the RG trajectories (for the d = 2 case) in the general coupling space 
of unrelated nearest- and next-nearest-neighbour coupling, rather than the above 
subspace9 of permutation-symmetric couplings. The conclusion is that for p > 0-741, 
the above ZuYc is not stable with respect to perturbations out of 9. In  fact more 
stable fixed points (not in 9) do exist. Furthermore, if one starts the recursion 
relations from the standard (nearest neighbour only) Ising model rather than after 
one Wilson decimation (which brings # into Y) ,  then only these new fixed points 
can be reached. The  exponents associated with the new fixed points are still accurate 
to around 2%. The very bad feature, however, is that all these fixed points are close 
together and have a correction to scaling exponent which is very close to zero and 
produces very slow transient terms which are not at all in agreement with corrections 
to scaling in the exact solution of the Ising model. One may speculate that this effect 
is perhaps the shadow (after the shunting approximation) of the existence of redundant 
variables. As yet there exists no convincing explanation of this defect of the variational 
methods. 

5. Field theoretic methods 

In  this section we turn to the problem of formulating the RG for field theory 
models involving a spin density rather than a set of spins at the sites of a lattice. 
Such field models are a priori no less physical than lattice models if we are interested 
in critical behaviour which is governed by fluctuations of all length scales. There 
are strong connections in fact between lattice and field models and we indicate in 
55.3.2 how the Ising model can be formulated as a field theory. This reformulation 
of the Ising model can be used as a vehicle to illustrate the kinds of interactions 
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which the spin density may have, but we prefer to work to this goal from Landau 
theory as a starting point. 

I n  this section we shall therefore discuss Landau theory and use it to motivate 
a statistical mechanical model of a field representing a spin density. The systematic 
approximation scheme in this model is the Feynman graph expansion. The  lowest- 
order term in this expansion gives Landau theory. We shall see by naive dimensional 
analysis how Landau theory breaks down in the critical region when the number of 
space dimensions d is less than 4 ;  the higher-order terms in the Feynman graph 
expansion are infinitely larger in the critical region than those in Landau theory. 
We shall then outline the various RG methods in field models, indicating how they 
give rise to systematic corrections to Landau theory in powers of E = 4 - d when d is 
less than 4. 

Many reviews of the substantial and sophisticated developments of both the 
Feynman graph expansion and the RG in field theories already exist. Standard 
texts on the Feynman graph expansion are Bjorken and Drell(1965), Bogoliubov and 
Shirkov (1959) (in relativistic quantum theories) and Fetter and Walecka (1971) 
(many-body physics). Amit (1977) develops Feynman graphs with a specific view 
to applications to critical phenomena. Elements of the Feynman graph expansion 
in Wilson recursion formulae are contained in Wilson and Kogut (1974), Wilson 
(1975) and Aharony (197613). For those already conversant with Feynman graph 
methods an authoritative review is given by BrCzin et al (197Ga); see also BrCzin 
(1975b), Wallace (1976), Weinberg (1976), Delbourgo (1976) and Macfarlane (1977). 
In  this review we do not set up the mechanics of the Feynman graph expansion; 
we wish simply to give the reader some insight into the B expansion and sufficient 
understanding to appreciate the applications summarised in the next section. Anyone 
aiming to do calculations using these methods must turn to the other reviews given 
above. 

5.1. Landau theory 

Consider the Helmholtz thermodynamic potential A( T ,  M )  for some magnetic 
system. If we know the form of A(T,  M ) ,  we can obtain all of the thermodynamic 
properties of the system as discussed in $3.2.1. For example, the external magnetic 
field, and hence the equation of state, is given by 

and the susceptibility x= aM/aH by 

etc. 
In  Landau theory one makes a guess for the form of A based on the assumption 

that it can be expanded analytically in T - Tc and M. In the critical region where 
both of these quantities are small only the dominant low-order terms are retained. 
Specifically we write 

A(T,  M)=ao(T)+al(T)M2+az(T)1M4+O(Ms) 
where odd powers in M vanish because symmetry under M-t  - M is always assumed. 



48 D J Wallace and R K P Zia 

Figure 11. Qualitative form of thermodynamic potential for ai > 0 (T > To) and u1 < Q  
(T  < Tc). 

The critical temperature is recognised by noting that provided a2( T )  > 0, the form 
of A(T,  M )  changes from (a) to (b )  in figure 11 as al (T)  changes from positive to nega- 
tive. When a l (T)  < 0, aA/aM = 0 has two non-trivial roots for M corresponding to the 
existence of two (up/down) values of spontaneous magnetisation. Therefore the onset 
of spontaneous magnetisation occurs when al( T )  changes sign, i.e. 

al (T)  = a(T - Tc)  + 0(( T - Tc)2)  

where n is a positive constant. 
Retaining only the leading terms we arrive at 

A( 1; M )  = ao( T )  + i( T - Tc)M2+ p.14 (5 .3 )  
where the constants a and a2( Tc)  have been absorbed into the scales of T - Tc and M. 
This form of the free energy gives the Landau theory of phase transitions. Up to the 
neglect of irrelevant M 6, ( T  - Tc)M2, etc, terms it is typical of the forms of the free 
energy obtained in most 'self-consistent' approximations, such as the mean field or 
Curie-Weiss theory of phase transitions (Stanley 1971, chap 5 and 6 ) .  

From equations ( 5 . 1 )  and ( 5 . 3 )  we immediately obtain the equation of state 

or 
H = ( T  - Tc)M + M 3  

H / M 3 = ( T  - TC)/M'+ 1. 

This exhihits the scaling form of 

with the identification 
HIM' = h(( T - Tc)/M 118) 

6 = 3  p= 4 h(x)=x+l .  

The exponents are in reasonable qualitative agreement with the experimental (d  = 3) 
values 6-4.5, j?-0*35, and a typical form for h(x)  is shown in figure 12. 

Similarly from (5  -2) we have 
1 
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Figure 12. Schematic illustration of the scaling form of the equation of state. This is a 
simplification of the data of Kouvel and Comly (1968) on nickel, with the full 
curve fit in Vicentini-Missoni et al (1969). The straight broken line is the mean 
field equation of state, appropriately normalised. 0, 622.5 K;  A, 625 K;  
+, 627.5 K; X ,  630 K;  V, 632.5 K; 2, 635 K;  Y, 640 K;  0, 645 K. 8-4-44, 
8=0*373, Tc=627.4 K. 

Then, for example, if we consider T > Tc and H = 0, so that M = 0, we can identify 
x = (2' - Tc)-Y with y = 1, in agreement with the scaling law y = p( 6 - 1) (equation 
(3.67)) and not far from the experimental range y w  1-25-1.37 for various kinds of 
magnetic systems in three dimensions. 

The Landau theory above may be extended to include a treatment of correlation 
functions. If smooth spatial variations in the mean magnetisation are allowed, then 
the generalisation of equation (5.3) looks like 

A(T, M ) = J  dax[a,(T)+i@7M(x))2++(T- Tc>M2(x)+$M4(x)], (5.7) 

In  the same spirit which led to equation (5.3), we neglect here higher-order terms 
in V M ( x ) ,  assuming M ( x )  to be only slowly varying. The correlation function 
G(x, y )  gives the change in M(x)  due to a small change in the applied field H ( y ) :  

It is the inverse (in a matrix sense with x and y as indices) of GH(y)/SM(x). Now 
from ( 5 . 7 ) :  

6A H(y)=----= - SVZM(y)+(T-  T,)M(y)+M3(y) 
SM(Y) 

4 
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and 

6 N ( y )  - [ - 5 V,2 + (T  - Tc)  + 3 M  2(y)] 6 d(x - y).  SA7@ - 
Taking the Fourier transform of this expression for M ( y )  M ,  a constant, gives 

z'(q) = ddx exp (iqx)G(x, 0) 

This is the familiar Ornstein-Zoernicke form (see Stanley 1971, chap 7 )  of the 
correlation function. It exhibits all the scaling properties discussed in $3.2.2, with 

e(0) = x 
(see equation (5.6)), and 

where the correlation length E is given by 

5-1 
(T--Tc)+3M' 

7 -2 0 v=&. 

( 2 (  T ,  M )  = --___ 

so that 

See BrCzin (197513) for further discussion. 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

5.2. Statistical mechanics of$elds 
5.2.1. Basic formalism. Although Landau theory gives a reasonable qualitative 
description of a three-dimensional phase transition, it is certainly inadequate quanti- 
tatively for most systems. One may underline the inadequacy by pointing out that 
Landau theory is really too universal. One obtains the same exponents and equation 
of state (5.5), independently of the dimensions of space d, or the number of compo- 
nents of the magnetisation. Critical exponents in, for example, uniaxial (Ising-like) 
systems certainly do depend on d, e.g. /3= $, y=7/4 for the exactly soluble, two- 
dimensional Ising model. 

The origin of this inadequacy of Landau theory lies in its neglect of fluctuations. 
In  field models we study the statistical mechanics of a field +(x) whose average value 
gives the magnetisation. The prototype Hamiltonian has a form reminiscent of the 
free energy in Landau theory: 

(5.14) 1 
&= I (  ddx - i ( v + ( ~ +  i i r o ( ~ ~ ( x ) + ~  7.40+40). 

The local interactions +2(x) and +4(x) have a form similar to (5.7). The essential 
temperature dependence is contained in ro(T). I t  is sufficient to assume that ro is 
an analytic function of T, behaving, in the neighbourhood of Tc, like 

yo( T )  - yo( Tc) = a( T - Tc) + Q(( T -- Tc)2) (5.15) 

as in (5.3). The  (V+)Z term ensures that short-wavelength fluctuations (magnetisa- 
tion densities varying rapidly in space) have a high energy; the scale of q5 is con- 
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ventionally chosen so that this term has coefficient .&. Such a ‘kinetic’ term with 
positive coefficient mimics interactions which tend to align the spins, in the sense 
that its effect is to favour states with uniform spin density. Unlike Landau theory, 
the assumptions of analyticity in + and T in equation (5.14) are now justified because 
we are considering a microscopic model for the system, cf the analytic expansion 
of the potential for atoms in a crystal, in powers of the displacements of the atoms 
from equilibrium. 

We shall use the Hamiltonian (5.14) in the Boltzmann factor exp (- 2) (i.e. the 
conventional 1/KT is already absorbed into fl for simplicity). 

The  presence of an external field H ( x )  correspond to adding a term 

- s ddXH(XW(X) (5.16) 
to the Hamiltonian. 

We stress that although qualitative considerations of symmetry and range of 
interactions place strong restrictions on the form of the Hamiltonian, the ultimate 
justification for the use of a Hamiltonian like (5.14) rests in showing that other 
possible interactions, +6(x), 4 2 V 2 4 2 ,  etc, are irrelevant, in the sense that they do not 
change the critical behaviour obtained from (5.14). This philosophy underlies 
all applications of the renormalisation group. 

Given a Hamiltonian, correlation functions are calculated by averaging the 
Boltzmann factor exp (-i@) over all configurations of the field. We write (cf 
equation (2.4)) 

(5.17) 

where JD+ denotes the functional integral-the ‘sum’ over all possible field con- 
figurations #J(x) .  

The functional integral is discussed in many articles (see e.g. the field theory 
reviews mentioned in $5.1). A rigorous mathematical treatment requires considerable 
sophistication (see, for example, Glimni and Jaffe 1976). I n  practice, this problem 
is simply side-stepped by setting up a perturbation theory for expressions such as 
(5.17), which is called the Feynman graph expansion. This expansion forms the 
basic tool in the use of the renormalisation group in field models. 

ID4 4 w  ’ * * 4 ( x d  exp (- fl) 
sD4 exP ( - “1 (+(x1) * ’ * = 

5.2.2. Landau theory as a zeroth-order approximation. Landau theory appears as 
the zeroth-order approximation in the Feynman graph expansion. To  illustrate 
this consider the Gibbs free energy, given by the partition function in the denominator 
of (5.17): 

exp( -G)=JD+exp( -Z)  (5.18) 
where we include an external field term (5.16) in A?. The basis of the Feynman 
graph expansion is the evaluation of (5.18) by the method of steepest descent, in 
which the ‘integrand’ exp (-- &) is approximated in zeroth order by its maximum 
value, i.e. with the value of + which minimises fl. 

I n  order to do this, one writes 

4(4 = 4 0 ( 4  + 9%) (5.19) 
where &,(x) is the value of +(x) which minimises the Hamiltonian, i.e. 

(5.20) 
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In principle bo may depend on x, but we shall consider only the case where the 
external field H and $0 are x-independent. In the lowest-order approximation of 
the Feynman graph expansion we shall see that 40 corresponds to the expectation 
value of the field and hence we are considering the case of uniform external field 
and magnetisation. In  this case the ( 0 + ) 2  term in 2 does not enter into (5.20), 
which therefore takes the form 

H =YO(  T)4o + -Buo+o3. (5.21) 

Translating the integration variable 4 in equation (5.18) according to (5.19) we 
find 

The effect of the translation (5.19) is to ensure that there is now no linear term in 
the integration variable $(z) within the exponential. The Feynman graph expansion 
is obtained by systematic expansion of the anharmonic terms: exp (O($3))= 1 + O(43). 
The zeroth-order approximation takes only the terms outside the integral, and 
therefore gives a Gibbs free energy density 

Similarly, one sees that 40 is to be identified with the magnetisation at the same 
level of approximation : 

M JD4 4 exp (- Z)/JD+ exp (- 2) 

= 40 (5.24) 

when terms of order $3 in jD$ are neglected (the numerator is then odd under *-+ - 4). 
Combining these results with the usual Legendre transform 

A - g = H M  

between Gibbs and Helmholtz free energy densities we see that we recover the 
results of Landau theory at zeroth order in the Feynman graph expansion: 

1 
4! A=+q, (T)  M 2 + -  u0M4 

with the equation of state H=ro(T)M+uoM3/6.  As in Landau theory we can 
identify ro(TC)=O at this zeroth order so that we write, with a suitable choice of 
temperature scale, 

YO( T) = T - Tc. (5.25) 
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A similar calculation gives, at the same order of approximation, the Ornstein- 
Zoernicke form 

(5 -26) 1 
'( ')=q2 + (2' - T,) + 

for the generalised susceptibility, defined by 

a) = J ddX exp (iP)((+(X) - M)(+(O) - M ) ) .  (5.27) 

The derivation of expression (5.26) is the extension to a continuous set of variables 
of a result which holds for a discrete number of integration variables: 

(5.28) 

The denominator in (5.26) is just the 'matrix' (Sz~/S$(x)S$(y))) ,=, ,  with (- Vz)  
in &' converting to 4 2  after Fourier transform, I n  fact, the Feynman graph expansion 
also has its origins in generalisations of (5.28). 

5.3. Beyond Landau theory 

5.3.1. The role of the cutofs and four dimensions. In order to go beyond Landau 
theory, an essential refinement of the form of the Hamiltonian is required. I n  ex- 
pression (5.14), we include terms of second order in derivatives. This means that 
the energy of fluctuations of wavevector q increases as 42, as q increases. Now, this 
is an appropriate form for low q ;  higher derivatives of the field just give higher 
powers of q, which are negligible if q is small. However, in order to obtain the frec 
energy and correlation functions we must average over all possible functions $(x), 
i.e. over fluctuations of all possible wavevectors. But the very existence of a lattice 
structure in the physics prohibits fluctuations with wavelengths less than the lattice 
spacing. This means that the q dependence in the energy must change drastically 
for q 2  near the edge of the Brillouin zone. 

This 'memory' of the lattice spacing is called in field theory the cutoff, A. Its 
general role is to inhibit the influence of fluctuations of wavevector q& A. It can 
be introduced in many ways. For example, with a so-called sharp cutoff the form 
of the Hamiltonian is left as in (5,14), but the average over the functions $(E) in 
(5.17), for example, is understood to mean an average over functions whose Fourier 
components are less than A. I n  other words, the wavevectors permitted lie in a 
spherical Brillouin zone associated with a 'lattice spacing' N A-1. Alternatively, one 
may add the coupling 

*{A-z( Vz+(x))z ddx (5.29) 

to the Hamiltonian. The  inhibition of fluctuations with q A is now achieved because 
the energy of such fluctuations is large, increasing like 44, and the Boltzmann factor 
exp (- &') is correspondingly small. Again A-1 has dimensions of length and is 
understood as the memory of the lattice. 

The  fact that A-2 appears as the natural scale of the dimensional coefficient 
of (Vz+(x))2 has a corollary; the generic (i.e. unexceptional) length scale of all dimen- 
sional coefficients in the microscopic Hamiltonian is the microscpic length scale 
A-1. Alternatively stated, the A dependence of all dimensional parameters in 2 
is determined by naive dimensional analysis, Specifically, since &' appears in an 
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exponential and is dimensionless, then the dimension of the field 4 is determined 
from Jddx( V$)2 to be 

[+I = [A]*(d-2). ( 5 . 3 0 )  

Hence the coefficient @ l m  of a general interaction : 

UlmJ ddX( Vm@) (5.31) 

(symbolic notation for any power of V on any of the +) has dimension 

[ u ~ J  = [A]d-m-*l (d-Z)  ( 5 . 3 2 )  
so that, e.g. 

[ r o ] = [ T -  Tc]=[A]2 (m=O, 1 = 2 )  ( 5 . 3 3 )  

(m=O, 1=4) ( 5 . 3 4 )  

( 5 . 3 5 )  

With this preliminary, we can turn to the question of the nature of the corrections 
to Landau theory induced by higher-order terms in the Feynman graph expansion. 
A proper discussion clearly requires the systematic development of the Feynman 
graph expansion. We refer the reader particularly to the article by BrCzin et al 
(1976a). Were we shall simply point out how dimensional analysis controls the 
validity of the Feynman graph expansion, and its zeroth-order approximation, 
Landau theory. 

The  Feynman graph expansion involves essentially the evaluation of the functional 
integral, JD4, as a power series in the anharmonic interactions. In  effect, for the 
Hamiltonian (5.14) one obtains correlation functions, etc, as a power series in uo. 
Now, at each order in UO, additional powers of A4-d appearing due to (5.34) must 
be cancelled by a quantity of the opposite dimension to ensure that these ‘corrections’ 
(or ‘perturbations’) have the same overall dimension as the lowest order. If only 
Ad-4 plays this role, then there are no problems. However, there are other dimen- 
sional quantities, T - Tc, M and wavevector q, and we are interested in the critical 
behaviour where each of these quantities tends to zero. In  this limit, the expansion 
in uo may therefore imply an expansion in the dimensionless quantities 
(A2/(T - T c ) ) * ( 4 - d )  or (A/M2/(+2))44 or (A/q)44. 

The importance of dimension four is now apparent. If d < 4, these ratios become 
arbitrarily large in the critical region: perturbation theory breaks down and the 
Landau theory becomes invalid. If d > 4, these ratios become arbitrarily small; 
perturbation theory and hence Landau theory is justified. 

The  actual mechanism of how these ratios appear is seen of course only in explicit 
calculations in the Feynman graph expansion. Suffice it to say that explicit calculation 
vindicates the above dimensional analysis, and shows moreover that when d = 4, 
perturbation theory and Landau theory also break down because of the appearance 
of logarithms (of for example A2/( T - T c )  and A/q) at each order in perturbation 
theory. 

This dimensional analysis also suggests why (when symmetry prohibits a $3 
interaction) 4 4  is the most important interaction: all higher powers of + or derivative 
couplings have a smaller power of A in the coupling constant, according to ( 5 . 3 2 ) .  
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5.3.2. Lattice and jield models. This subsection is a brief digression to indicate 
a precise connection between lattice and field models (Baker 1962, Siegert 1963). 

Consider the Ising model in a space-varying external field H t .  All correlation 
functions can be obtained from the partition function 

Z 1= exp (3stKtjsj) -I- €its$ ( 5  36) 
( 8 )  

as discussed in $3.2.2. We have allowed arbitrary two-spin interactions &j and used 
the repeated index summation convention on the site labels. The  identity 

exp ( ~ s t ~ t j s j )  = c (n J? d+t) exp ( - ~ 4 i ( ~ - l ) t j + j  + si~bt) ( 5  * 37) 
i 

is obtained by completing the square in + in the Gaussian integral; C is a normalising 
constant and K-1 is the matrix inverse of K.  We can therefore rewrite (5.36) as 

= c (v f: m dQi) exp c - 4 + i F 4 ) t j + d  exp [(HZ + 4i)stI 

=c (n J-"m d h )  exp [ -Q+a(K-l>tj+j+C In (2 cosh (Ht++")] .  (5.38) 

(81 

Expression (5.38) is essentially in the form of a field theory, with the lattice providing 
a specific cutoff. The  functional integral in equation (5.17) may be regarded as the 
continuum limit of I T 6  J?, d+t. If K is short range, +i(K-l)(j+j is the analogue of 
terms J ddxa-d [+2, n2( V+)2, a4( V2+)2, etc] where a( N A-1) is the lattice spacing. 
When + is normalised so that the coefficient of (V+)2 is +, as in the Hamiltonian 
(5.14), all the features of (5.14) are recovered. The  A dependence of coefficients 
is as in equation (5.32). The  $2 term picks up a coefficient linear in 1/T where a 
constant term comes from +K-+b and the 1/T from the $2 term in the expansion of In 
cosh 4 (after the change of normalisation of the + field and recalling K N l / T ) .  This 
coefficient is monotonic and analytic in T ( T  > 0) as required. 

This discussion can obviously be extended to more general lattice models. It 
is possible also to set up a Feynman graph expansion for the expression (5.38). 
The  zeroth-order term is the mean-field theory of the Ising model. The  first-order 
term exhibits explicitly the breakdown of mean-field theory, dominated by the $4 

interactions, as indicated in 55.3.1. For further discussion see Hubbard (1572a), 
BrCzin (1975b) and BrCzin et aE (1976a). 

5.4. Recursion f o m " e  and E expansion 

The  previous subsection shows how the problem of existence of two length scales, 
the lattice spacing and the correlation length, shows itself in field models. I n  this 
subsection we review the Wilson-Fisher recursion formulae (Wilson 1971a, b, 
Wilson and Fisher 1972) and the extent to which they provide a solution to the prob- 
lem. The  recursion formulae are in the same spirit as the block spin methods of 
94. There the idea was to start from a system of a certain lattice spacing and trans- 
form it to an equivalent system with a larger lattice spacing. The  analogue in field 
models is to start with a system with a sharp cutoff A; the Hamiltonian is as inequation 
(5.14) and only fluctuations with wavevector q < A  are considered. This system 
is then transformed to a system with a smaller cutoff Ajb (b  > 1) by doing the partial 
configuration sum over all fields with wavevector between Ajb and A. There- 
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fore in the new system there are fluctuations with wavevector only between 0 
and Ajb. 

This is easily formalised in terms of the Fourier component spin: 

s(q) = f ddx exp (ipx)+(x). 

In  terms of s(q), the Hamiltonian (5.14) has the form 

4 4  = f; (is2 + +ro(T) )W(  - 4) 

where 
f t = j k l < A  dd q(27T)- d. 

The Fourier-transformed correlation functions are given by 

(5 * 39) 

(5.40) 

(5.41) 

(5.42) 

The equivalence between the functional integrals (5.15) and (5 -42) is obtained 
simply by regarding (5.39) as a linear change of integration variables. The momentum 
conserving 6 functions are a consequence of the translation invariance of the theory. 

In  order to implement the above idea of doing a partial configuration sum, we 
write 

(5.43) 
and define 

exp ( - s( u)) = ID5 exp ( - #(s)). 

The new system n(o) has fluctuations with wavevectors up to A/b, and it has the 
same partition function as 8(s )  : 

JDu exp (- 2 ( u ) )  = JDvJDii exp (- Z ( s ) )  

= jDs exp (- &(s)) 

since the combined ‘sum’ on o (which has q< A/b) and ii(A/b< q<  A) constitutes the 
entire ‘sum’ on s(q < A) (cf equation (2.1)). 

The formalism so far parallels the decimation procedure of $2 (except that the 
effective Hamiltonian is labelled 2 and not H’).  Let us consider now the evaluation 
of JDii in equation (5.44). I t  cannot be done exactly; the Wilson-Fisher (1972) 
recursion formula rests on a perturbative evaluation of ID& by a generalisation 
of the conventional Feynman graph expansion. This is explained in some detail 
in Wilson and Kogut (1974) and Wilson (1975) (see also Hubbard 1973, Bissett 1973). 
One writes (in an obvious extension of the notation in (5.41)): 
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1 +perms+ . . . (5.44) 

where ‘perms’ denotes permutations of 1, 2, 3 and 4 and + , . . denotes the terms 
of order 62, 63 and 64. We can pull the part independent of the integration variable 
6 out of the integral, just as in equation (5.22)’ and obtain the zeroth-order form 
for .9(u): 

Jw = i .fy (q2 + r o ( T ) ) u ( M  - 9) 

If uo were zero, expression (5.40) would give the exact u dependence of 2. 
(The analysis of this so-called Gaussian model is given in Wilson and Kogut (1974).) 
The  ‘higher-order’ terms evaluated ELS a power series in uo become increasingly 
more complicated. I n  general, new forms of interaction appear, just as in block 
spin methods. However, provided that uo is small, one can show that 2(0) has the 
form 

2(a)= 4 j ~ ’ ~ ( A q 2 + B > a ( p ) u (  -p) 

where 
A = 1 + O(~o2) (5.47) 

B = ro - +aiywo + cuo + O(u02) (5.48) 

C = uo( 1 - jaauo + O(u02)) (5.49) 

and OT represents other types of coupling, which are effectively higher order in 
uo than the results explicitly exhibited in (5.47)-(5.49). a and c are two constants 
which can be evaluated explicitly using the Feynman rules. 

Equations (5.47)-(5.49) have been simplified (with hindsight, justifiably) to 
give the simplest possible equations to analyse. Note that the average over fluctua- 
tions with A/b < I q )  < A produces no embarrassing ( T  - Tc)(d-4)/2 terms for example. 
Alternatively stated, the RG functions are calculable in perturbation theory. 

The  new effective Hamiltonian 8‘ is obtained from $(U) by (a) a rescaling of 
momenta 

p’ = bq (5.50) 

so that the cutoff in the p’ variables is again A, and (b) a rescaling of fields 

S’(P’) = 5 0 k )  (5.51) 
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so that the gradient term in S’(s’) has coefficient 3, as in .z?(s): 

a?’($’) = 4 J4 (qQ+ ro’)s’(q’)s’( - q’) + . . . * (5,52) 

These operations may be understood as exhausting the freedom of choice of 
scale of q‘ and s’ in order to make a?’($’) look as similar as possible to S(s): this 
choice will therefore optimise the likelihood of finding a fixed-point Hamiltonian, 
for which x?’ = &‘ (= PQ). 

Combining these rescaling operations with equations (5.47)-(5,49), one finds 
readily 

ro’ = b 2 ( r o  - 4arouo + CUO + O ( U o 2 ) )  

UO’ = b%o(l- ;.U0 + O ( U o 2 ) )  

(5 * 53) 

(5.54) 

C=b(a-2)/2(1+ O ( U o 2 ) )  (5 155) 

where 6==4-d. The powers of b appearing initially on the right-hand sides of 
these equations arise from the rescalings (5.50) and (5.51) and are controlled by 
naive dimensions. 

Let us see now how the E expansion arises from equation (5.54). There is clearly 
the Gaussian fixed point uo*=O. If we start with very small UO, then for positive 
~ ( d  < 4), UQ’ N bEuo > 240, i.e. the Gaussian fixed point is unstable to the 5 4  perturba- 
tions. However, there is a non-zero value of uo such that the growth from bzro is 
cancelled by the negative term of order uo2. Thus there is another fixed point, 
which is of order E for E small: 

I=be(I-gauo*+ . . . ) 
= ( l + ~ I n b +  . . . )(I-;UUO”+ 

i.e. 
Z E  In b 

3 auo” = -__ + O( € 2 ) .  

Equation (5.53) then gives a fixed point: 

. .  

(5.56) 

(5.57) 

The importance of E as a small parameter should be clear. I t  enables us to find a 
non-trivial fixed point for d < 4  in which the anharmonic coupling is of order E ,  

and expansion in the anharmonic coupling gives a systematic expansion in E .  Higher 
orders in uo give higher orders in E in equations (5.56) and (5.57). 

Critical exponents are obtained from the stability matrix (see equation (3.4) and 
the subsequent discussion) : 

(5.58) 

The eigenvalues of this matrix are: 
(i) bz(1- Q E In b) + O( €2). This is greater than 1 for E small enough and repre- 

sents the unstable perturbation proportional to ( T  - Tc);  for a given UQ, YO( T )  must 
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be chosen equal to the special value ro( T,) in order to ensure that there is no com- 
ponent along this eigenvector. According to equation (3.12), the exponent v is 
given by 

__ + O( €2)  
In b 

In [b2(1- $ E  In b)] 
V =  

= 3 + +‘a€ + O( € 2 ) .  (5 9 59) 

(ii) 1 - E In b+ O( €2). This is less than 1 for E small enough and represents a 
stable perturbation by an irrelevant interaction. According to equation (3.20), 
this produces corrections to the leading singular behaviour proportional to 
(uo - U$)( T - Tc)c/2+ O( €2). This is a so-called ‘slow transient’ effect. Note that 
if we chose uo=uo9, then we can eliminate these transient terms. This is the basis 
of the Feynman graph method (Wilson 1972) for calculating critical exponents and 
scaling functions. 

The fact that the change in field scale 5 (equation (5.51)) is determined by naive 
dimensional analysis to order € 2  (equation (5.55)) implies 7 = O( € 2 )  (equation ( 3 . 8 8 )  
et seq) . 

We remark: 
(i) The method can in principle be extended to higher orders in E ,  but in general 

the ‘other terms’ in equation (5.52)-0(~6, 4254, etc)-have to be included and the 
calculations become correspondingly complicated. Critical exponents associated 
with an external field H can also be obtained (Hubbard 1972b). Values are tabulated 
in $6.1. 

(ii) Although the principal exponents have mean-field values for d > 4, correlation 
functions of many fields may develop non-mean-field singularities (see, for example, 
Fisher 1974b). 

(iii) The  limit bB 1 has been studied by Aharony (1973~) and Bruce et aZ(l974). 
They find that simplifications occur, and that the order € 2  calculation may be per- 
formed by including only $* interactions in this limit. Although it is not the most 
powerful method for obtaining E expansion, this approach has been used for many 
other practical calculations, e.g. Priest and Lubensky (1976); see Aharony (1976b) for 
further references. 

(iv) The  limit b+l  is also interesting (Wegner and Houghton 1973). I t  cor- 
responds to averaging over fluctuations with wavevectors in vanishingly thin shells. 
If we write b = exp T ,  such contributions are proportional to T and recursion formulae 
such as (5.53)-(5.55) become differential equations for a continuous family of 
effective coupling constants UO( T )  : 

ug’=exp (TE) U O - ~ T ~ U O ~ + O ( U O ~ )  
i.e. 

(5.60) 

This is to be solved with initial conditions uo(0) = uo. 
The structure of the equations changes significantly from the case above where 

b is arbitrary. 
Firstly the analysis of scaling properties is much simpler using a differential 

form (5.60) rather than a recursion formula such as (5.54). For example, there is 
now no possibility of the oscillatory behaviour in, for example, equation (3.43). 
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The analogue of the general case (3 -2) involves a family of differential equations, 
one equation for each coupling : 

Fixed points are solutions of 
P&") = 0 

and exponents ya  (equation (3.32)) are eigenvalues of the stability matrix 

aPc - (U"). 
auj 

For example, in 4 - E dimensions, equation (5.60) gives 

2 €  
uo" = -- 3 2  + O( €2) 

and 

For U close to U", we have 

(ag/auo)(uo") = w = - E + O( €2). 

(5.61) 

(5.62) 

(5.63) 

(5.64) 

(5.65) 

with the solution 
~~(~)-uo":exp ( O T ) ( U O - U ~ + )  (5.66) 

so that the fixed point (5.64) is stable since o is negative for small E. The  exponent 
w governs corrections to scaling, as discussed in 93. 

Secondly the higher orders in uo in (5.60) come from Feynman graphs with 
more than one loop. These graphs involve integrations over a shell A( 1 - T )  < I krl< A 
for each independent loop momentum Ki. Thus each loop produces a factor r and 
hence two and higher loops are negligible in the limit 7 4 0  compared with the one- 
loop result (5.60). The $6  coupling, ZIO say, does appear in the equation for duo/dT. 
The differential equation for V O ( T )  involves the $8 couplings, etc. Thus in this thin- 
shell formulation one obtains a hierarchy of exact, coupled differential equations. 

This method is not efficient for €-expansion calculations but may be a vehicle 
for other approximation schemes-see (v) below. 

The  first appearance (historically) of a differential formalism (which does not 
in fact have the second feature above) is discussed in 95.5. The use of differential 
equations rather than the discrete transformations (3,Z) is much more important 
than its meagre treatment here might suggest. 

(v) All of the above schemes use a sharp cutoff-fluctuations with wavevectors 
1 q /  > A are not permitted. This choice of cutoff is of course arbitrary and, in practice, 
must be handled carefully (Wegner and Houghton 1973). In  the 'smooth cutoff' 
formalism (Wilson and Kogut 1974) one starts with a formalism similar to that in 
lattice models (equation (4.1)): 

exp ( - ,3E"T($" = SD4W(+', $ 9  4 7 ) )  exp ( - &(4s))* (5.67) 

X($) is the initial Hamiltonian, and apart from rescalings analogous to equations 
(5.50) and (5 ,51) ,  ST($') is the effective Hamiltonian for a system in which fluctua- 
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tions with wavevectors I Q I  > e+R (T > 0) are damped out, smoothly. This is achieved 
by choosing a function aa(7) such that as T increases W(+f ,  4, a*(.)) approaches 1 
for such fluctuations. A qualitative form for aq(7) is shown in figure 13. The func- 
tional differential equations obeyed by ST(+) are discussed in Wilson and Kogut 
(1974). The E expansion is rather complicated in this formalism but can be handled 
at low order; critical exponents are independent of the precise form of cutoff (Golner 
and Riedel 1975a, Shukla and Green 1975, Rudnick 1975a, Bissett 1975). However, 
one may hope to find alternative approximation schemes (Golner and Reidel 197513) 
in this formalism. 

I n  the general formalism (5.67) one certainly does encounter redundant variables 
(see the discussion and references in $4.1). 

(vi) In  the approximate recursion formula of Wilson (1971a, b), Wilson and 
Kogut (1974, pl17), one neglects the momentum dependence of all contributions 
to the effective Hamiltonian 3(0), defined in equation (5.44). 2 ( u )  then becomes a 
power series in O. This approximation is motivated by the observation that the 
scale factor 5 in (5.51) differs from that obtained by naive dimensional analysis 

Figure 13. 

t 
I r' 

/ 7 = 3  

1 
Qualitative form of the incomplete integration function CL*( T )  in equation (5.67).  

by terms of order € 2 ,  I n  the approximate recursion formula all contributions to 
( V + ' ) 2  are neglected, so that 5 = b ( d - - 2 ) / 2 ,  and hence r ) = O  automatically. This is 
a good approximation to first order in E expansion since r ) = O ( ~ 2 )  and a tolerable 
approximation in three dimensions where r)  2: 0.04. Within this approximation the 
field variable +(x) may be replaced by a single variable + without loss of generality, 
and the recursion formula looks like 

where Q(+) - r + 2  represents interactions of the form 2444 + w+6+ . . . . This expres- 
sion can be used to obtain critical exponents of all interactions of the form Ean+" 
to first order in E (Wegner 1972b). It can also be used to obtain numerical results 
in three dimensions (Wilson 1971a, b). Wilson has also studied the fixed point and 
exponents obtained from (5.68) in d dimensions (Wilson and Kogut 1974) and 
analysed the results to indicate the asymptotic nature (zero radius of convergence) 
of the E expansion. (The convergence of the E expansion will be considered in 
$6.1 when results are tabulated.) Golner (1973a) has derived a modified form of 
the recursion formula in which r )  is not necessarily zero. 

These above remarks do not cover all the recursion formulae in the literature 
but should give an indication of their variety. 



62 D J Wallace and R K P Zia 

5.5. RG in renormalised perturbation theory 

In  the previous section we outlined the Wilson-Fisher recursion formula, and 
many developments of it. We now discuss qualitatively the theory of renormalisation, 
whose development led to the first RG formalism of Stueckelberg and Petermann 
(1953) and Gell-Mann and Low (1954). 

The theory of renormalisation was developed in the early 1950s to handle the 
problem of ultraviolet divergences in relativistic quantum field theories (Rem) 
such as quantum electrodynamics. Remarkably, the formalism of such theories 
of elementary particle interactions is very similar to that of the statistical mechanics 
of a field, with the main differences as follow. 

(i) exp (-8) in (5 .17)  is replaced by exp (iA), where A is the action. For a 
theory describing interacting spin-0 Bose particles, a typical form of action is 

(5.69) 

where Jd4x is over four-dimensional space-time, and 8,+8,+ is the relativistic in- 
yariant (8,+)2 - (V+)2 in units in which the velocity of light is 1.  Up to corrections 
induced by the self interactions, m2 is the mass of the particle. 

(ii) The  correlation functions (+(XI). . . ~ ( x N ) )  in (5.17) become the Green 
functions of the quantum field theory, from which scattering amplitudes are cal- 
culated. 

The Feynman rules for calculating Green functions in RQFT as a power series 
in U are therefore extremely close to those for calculating correlation functions in 
statistical mechanics. However it is conventional in RQFT to presume that the form 
of interaction (5 .69)  is correct to arbitrarily high momentum, or short distances-- 
there is no analogue of a lattice spacing in space-time. In  this case the discussion 
in $5.3.1 indicates enormous problems, because if there is no cutoff (A->co) the 
factors In A/q, in Airit which accompany the expansion in U are infinite. 

The problem is therefore that if one tries to calculate scattering amplitudes in 
terms of U and m, the parameters in the action (5 .69) ,  there are meaningless diver- 
gences. The renormalisation programme to overcome this difficulty is as follows. 
In  order to obtain meaningful initial expressions one regularises, i.e. puts into the 
theory some kind of cutoff. Scattering amplitudes can therefore be calculated in 
terms of U, m and A. There are divergences in the limit A-tco, of course. Now, 
instead of writing the scattering amplitudes as functions of U and m, one writes them 
in terms of the physical or renormalised quantities U R ,  m ~ .  For example, the physical 
coupling constant UR could be defined as the value of the scattering amplitude of 
two particles-ttwo particles at threshold (zero three-momentum 4). One now 
expresses scattering amplitudes in terms of U R  and mR, and A, instead of U and m. 
(Technically, a change in the scale of Green function, analogous to the rescaling 
(5.51), is also required.) 

The 2-2 scattering amplitude written in this way has one obvious property: 
at threshold it equals U R ,  and hence is Jinite in the limit A-tco, with U R  and mR 
fixed. The  theory of renormalisation is designed to discover the types of theories 
for which all scattering amplitudes are finite for all values of momenta in the limit 
A-co (at fixed physical couplings and masses). The  class of such renormalisable 
theories is non-empty, and includes (5 .69) ,  quantum electrodynamics and non- 
Abelian gauge theories. 

This theory of renormalisation in RQFT has been enormously developed during 
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the past 25 years. We list only some general references: Bogoliubov and Shirkov 
(1959), Bjorken and Drell (1965), Lowenstein (1972), Zimmermann (1971) and 
Taylor (1976). A recent review is given by Delbourgo (1976). 

The  RG in this formalism arises through the recognition that there is an arbitrariness 
in the reparametrisation of the scattering amplitudes. There is no need to rewrite 
them in terms of the value U R  at threshold-one may choose to use the value UR(T) ,  
at any momentum scale e -7p~  where PO is some fixed momentum scale. The same theory 
can therefore be written in terms of any one of a continuous family U R ( T )  of coupling 
constants, which give the effective interaction strength at a momentum scale e-7~0. 
This family of equivalent coupling constants for any given theory is obtained as 
the. solution of a differential equation (as in equations (5.60)-(5 ,66)) 

dUR(7)/d7 = f3(uR(7)) 

with initial conditions U R ( ~ ) = U R ,  say. The function f 3  can be calculated from the 
Feynman graph expansion as a power series in its argument. 

Let us now indicate how this approach is applied to critical phenomena in 
statistical mechanics, where one has a cutoff A, and is interested in the region qQ A, 
T - T,<Az, etc. The idea is to introduce an arbitrary momentum (wavevector) 
scale PO, such that 

One then writes the correlation functions in terms of the renormalised (dimensionless) 
coupling UR defined at the momentum scale po. In  the same spirit that the dimension- 
less parameter appearing in the Hamiltonian has some arbitrary value, we permit 
U R  to have any unexceptional value. Now we can make an approximation for the 
correlation functions based on the fact that po/A< 1, namely we can let A-tco, 
and neglect the corrections which are typically of the form ( p 0 2 / A 2 ) 1 - ~ ~  for some 
integer m, i.e. (p$ /A2)  lnP(po/A) in E expansion. The limit A+oo in this case is 
not a necessity forced on us because there is no physical cutoff, as is envisaged in 
RQFT, but is simply an approximation which permits us to neglect small terms in 
correlation functions which are written in terms of UR. 

Finally we use the freedom of choice of the momentum scale to define UR(T) ,  the 
effective coupling at the momentum scale e-7p~.  I n  the limit 7-00, U R ( ~ )  gives the 
effective coupling at the infrared momentum scales in which we are interested, 
T o  describe this behaviour we look for fixed points UR* and study the behaviour 
close to fixed points as in equations (5.61)-(5.66). 

Renormalised perturbation theory is an enormous subject. We restrict ourselves 
to the following remarks. 

(i) The scaling properties of correlation functions and free energy, the form 
of corrections to scaling, etc, are compactly described by a set of differential 
equations. 

(ii) A particularly attractive feature is that the differential equation for the $4 
coupling, say, does not depend on the coefficient of $6, etc, in contrast to the Wilson- 
Fisher approach discussed in $5.4. The effect of these so-called composite operators 
($6, etc) can in principle be calculated; the critical exponents associated with them 
can be obtained as a power series in E .  

(iii) The precise form of these differential equations depends on the choice 
of renormalisation procedure. An indication of the variety of these can be found 
in Zinn-Justin (1973), 't Hooft (1973), Weinberg (1973), Lowenstein (1972), Schroer 

9, (T  - T c ) 1 / 2 4  Q A. 
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(1973) and Mitter (1973). One obtains the same result for universal quantities (ex- 
ponents, scaling functions, etc) independent of the particular renormalisation 
procedure. 

Equivalence to the other kinds of RG discussed in $54 and 5 is still not completely 
clarified, although there is always agreement in practice (see for example the discussion 
of the E expansion in Madanoff’s variational method (Kadanoff et a1 1976)). For a 
general discussion see Benettin et a1 (1977). 

(iv) The  asymptotic form of correlation functions (the limit 6-144 (<PO,  A)) 
is studied by the Callan-Symanzik equation (Callan 1970, Symanzik 1970) in * con- 
junction with the operator product expansion (Kadanoff 1969, Wilson 1969, Symanzik 
1971, Mitter 1973. See for example BrCzin et a1 (1974a)). The  relationship of the 
Callan-Symanzik equation to the RG is discussed in, for example, Benettin et a1 (1977). 

(v) Renormalised perturbation theory is a particularly efficient tool for €-expansion 
calculations (see the results tabulated in $6.1). 

(vi) The  above references are less than a smattering of the literature on re- 
normalised perturbation theory. We recommend the interested reader to pursue 
the articles by Brezin et a1 (1976a) and Amit (1977). 

6. Applications 

In  this final section we give some references to applications of the techniques 
discussed in the previous sections. Mostly we shall be concerned with applications 
to phase transitions and related problems ($56.1-6.7); this is because the richest 
and most successful results have been obtained here. Those who are not specifically 
interested in phase transitions may regard these sections as an indication of what 
can be done. Section 6.8 contains an extremely brief review of applications in 
elementary particle physics. Although the results of the RG in elementary particle 
physics are not as conclusively confirmed in experiment, this section is heavily under- 
weighted in view of the contribution to RG theory made in the study of relativistic 
quantum field theory. Section 6.9 contains a ragbag of other applications which 
are collected there mainly because of our incompetence to deal with them at any 
length in the separate sections they merit. Some concluding remarks are made in 
$6.10. Throughout this section the references listed are at best a ramified set from the 
literature. 

6.1, The n-vector model-short-range interactions 

6.1.1. The classical n-vector Heisenberg model. In  stating results, it is convenient 
to generalise the Ising-like models considered up to now to Heisenberg-like models, 
where the basic degree of freedom is an n-component vector (+a(x) in a field model, 
sma in a lattice model with sm2= 1 at each site m). The basic Hamiltonian is O(n)- 
invariant but otherwise has the same form as equations (2.3) or (5.14). The  magnetic 
field Ha, or its analogue, is a vector and the external field term is, e.g. Ha Xm sma. 

The Ising model corresponds ton  = 1, and should be applicable to uniaxial magnets, 
the liquid-gas system (through the lattice gas model-see Griffiths (1972), or more 
generally Hubbard and Schofield (1972a)) and binary alloy mixtures. The  n = 2  
case should be applicable to magnets with an easy plane of magnetisation, and to 
the superfluid transition in 4He. The n = 3  case is applicable to isotropic three- 
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dimensional magnets. There are also many physical realisations of models with 
an order parameter which is an n-component vector with n 2 4. I n  general these models 
have a lower symmetry than O(n). We shall discuss them later. (See Kadanoff et a1 
(1976) and Fisher (1967a) for more details on the various types of critical systems.) 

The  O(n)-invariant model is almost as easily handled in field theory as the one- 
component model. The  dependence on n of fixed point, critical exponents, etc, 
can be explicitly displayed in the E expansion. In  contrast there are problems in 
implementing the RG in the lattice n-vector model. They will be discussed in 96.5. 
Since RG results in Ising lattice models are fairly thoroughly reviewed in 94, we 
concentrate here on field theory results for the n-vector model in 4- E dimensions. 

6.1.2. Principal critical exponents; convergence of E expansion. Early references on 
€-expansion calculations are given in 95.4. The  results 

y=1+--- n + 2  E+-- (n+2)(n2+22n+52) E 2  

2(n + 8) 4(n + 8 ) 3 - -  

+ ____ [n4 + 44n3 + 664n2 + 2496n + 3 104 - 48( 5n + 22) c( 3)] €3  
8(n + 8)5 

+ O( E4) 

$+-- (n +2) ( - rt2 + 56n + 272) €3 
n + 2  '=w2 8(n+8)4 

+-- (n +2) [ - 5n4- 230%3+ 1124n2+ 17920n + 46144 32(n + 8)6 

- 384(5n + 22) g3)] ~ 4 +  O( €5) (6.2) 

were obtained by BrCzin et a1 (1973d). The  factors of (n+2) persist at all orders 
in perturbation theory and imply that the continuation to n =  -2  has mean-field 
exponents (Balian and Toulouse 1973, Fisher 1973). The  major critical exponents 
controlling leading singularities are obtained from these expressions by the scaling 
laws (3.67), (3.94) and (3.98). They are tabulated in, for example, Wilson and Kogut 
(1974). ((3) (2: 1.20) is the Riemann t: function. 

for n =  1, 2, 3 are given in table 2. The  
sums to € 2  for y ( € 3  for q )  agree very well with the series results for d = 3 (E  = 1). 
The  agreement is distinctly poorer when the €3 terms (for y ;  € 4  for q)  are added. 

The numerical contributions to y and 

Table 2. Contributions to y and 7 at low orders in compared with series results. 

EXPO- 
nent n EO E €2 €3 

Sum 
€4 (€=1) Series 

Y 1 1 0.167 0.077 0*040-0*074 ((3) - 
2 1 0.2 0.1 0*056-0*077 5(3) - 
3 1 0.227 0.119 0*069-0*076 5(3) - 

1.195 1*250+0*005 
1.263 1*318+0.01 
1.324 1*405+0*02 

7) 1 0 0  0,019 0.019 0 ~ 0 1 1 - 0 * 0 1 7 ~  (3) 0.029 0*047+0*01 
2 0 0  0.020 0.019 0.011-0*016[ (3) 0.031 0*04+0*01 
3 0 0  0.021 0.018 0*009-0*014( (3) 0.031 0*04+0.01 

5 
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The problem of convergence is even more pressing for the correction to scaling 
exponent w (equation (5.65)) : 

- E +  3(3n+ 14) E 2 - - - - - -  ( 33 n 2 f T  46 1 n + 740 + 24(5n +22)<(3)) 63 

(n+8)2 ( n f 8 ) 3  ' 4  

(BrCzin et al 1973b). 
Attempts to improve convergence or resolve the problem have been made by 

Nickel (1974), Colot et a1 (1975) and Raker et a1 (1976). Nickel (1974) recognises 
the probable asymptotic nature (zero radius of convergence-see Wilson and Kogut 
(1974 p124) of the E expansion and calculates a sensibly chosen subset of higher-order 
graphs. When the contributions of these graphs are summed by continued fractions, 
their net effect is to reduce the coefficient of the 5(3) terms in (6.1) and (6.2) by a 
factor of -0.4. His final results are, for example: 

n-1; y = 1.250 rf: 0.005 

l z = l ;  7 = 0.0413 & 0.001 (6 * 4) 
in excellent agreement with the series expansion results. 

Nickel has also calculated the main RG functions to fifth non-trivial order in 
the +4 coupling in three dimensions using the Callan-Symanzik fctrmalism. -4 typical 
result is (n= 1) 

P(v)= -~i-~2-0.422v3+0.351~~--0*376~5+0.496~'+ . . . (6  * 5 )  
where o is a suitably normalised coupling constant. There is now no small parameter 
E to enable us to find a systematic zero of this function (to give U*, see equation 
(5.62)) but there are enough terms to enable PadC-Bore1 resummation technique 
to be applied to find a zero numerically. This is reported in Baker et a1 (1976), who 
quote the results (n = 1, It = 3) 

y = 1.241 f 0.002 

7) = 0.02 rt 0.02 (6 * 6) 
-0.78+0*01. 

(The conventional definition of w ,  and sometimes of p(u), has an opposite sign.) 
The most remarkable developrnents on the problem of divergence of the Feynman 

graph expansion and the E expansion have been made recently. Following a new 
steepest descent expansion using instantons, Lipatov (1976) and BrCzin et aZ(1977a, b) 
have shown how to obtain systematically the behaviour at asymptotic orders in 
perturbation theory. The idea of controlling asymptotic orders first appeared in 
the anharmonic oscillator (Bender and Wu 1973, 1976; see also Eanger 1967, Parisi 
1977). We quote the results of BrCzin et a1 (1977a, b): the series are of the form 

€ . K ' K ! (  - l)%KK"( 1 f O(K-1)) 
6: 

with 
3 i- +?a for 

b -  ( 3 a = 
n + 8  s + g n  for w. 
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These developments provide a very rich field for exploration. The divergence problem 
has not been studied to the same order or depth for other physical quantities; we 
shall adopt the philosophy that the low orders in E expansion do appear to give a 
reasonable quantitative picture. 

6.1.3. Free energy and equation of state. The scaling function h(( T - Tc)/M 1/1)) 
equation (3.68), is known to order €2  for general n and € 3  for n= 1 (Brizin et aZ1972, 
1973e, Avdeeva and Migdal 1972, Avdeeva 1973, Wallace and Zia 1974). Con- 
vergence towards the series results of Gaunt and Domb for the Ising model are 
shown in figure 14. Convergence is not as good for general n. (Here and henceforth 
we direct the readers to the references for explicit results.) 

' I  
Figure 14. Comparison of the n = 1 equation of state function h(x) at order 0, 1 and 2 in c, 

with the numerical results of Gaunt and Domb (1970) (from BrCziii et  al 1973e). 

There are many interesting properties of h(x). 
(a) It is in general impossible to write a closed explicit form for h(x )  which 

obeys all of the analyticity requirements of Gr is ths  (1967). A particularly elegant 
way of preserving scaling and analyticity requirements is to write the equation 
of state in a parametric form (Josephson 1969, Schofield 1969, Schofield et al 1969). 
It turns out that the simplest such model, the linear parametric model, is an exact 
representation of the Ising equation of state to order € 2  (BrCzin et al 1972). It must 
be modified to incorporate the € 3  results (Wallace and Zia 1974). I t  is not satisfactory 
for nf  1 even at order E .  

(b)  The region of spontaneous symmetry breaking (the coexistence curve T < T,, 
H = 0) is particularly interesting. For n # 1, there are Goldstone modes because 
of the spontaneous breaking of a continuous symmetry. These are the spin waves 
of a dynamical treatment, and in equilibrium statistical mechanics are manifested by 
infinite transverse susceptibility. Given the equation of state 

Ha = Mal MI "-lh(( T - Tc)/ IM I 1/1) 
the inverse susceptibility tensor is 
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For changes in magnetisation perpendicular to H, this tensor has (a - 1) eigenvalues : 

(xI)-l= IMIS-lh((T -Tc)/lMll/p) 
so that 

x I= MIH. (6.8) 

Clearly x L+oo as H-tO ( T  < T,, i.e. Mp 0). 
Therefore, for a system with continuous symmetry, every point along the entire 

coexistence curve (H=O, T < T,) is a critical point in the sense that the transverse 
susceptibilities (6.8) are infinite there. I t  turns out that these critical transverse 
fluctuations do produce additional singularities for all T < Tc. They induce a diver- 
gence of the usual longitudinal susceptibility: 

(H-tO, T < Tc fixed) (6.9) 
aM 
aH,l 

x - N aH-$I2+ bHo+ 0(1) 

where E =  4- d as usual. This behaviour is believed to be exact for all E(O < E < 2). 
The coefficient a has a factor (n-1) so that the singularity H+/2 is absent for the 
Ising system. The exponent y is therefore not defined for a Heisenberg system 
(n# l )  below Tc. The form (6.9) first appeared in spin-wave theory (Holstein and 
Primakoff 1940). The E expansion of the singularity (6.9) also appears in the E-expan- 
sion calculations. The scaling generalisation of (6.9) when T is close to Tc can be 
resurrected from the equation of state function h(x)  (BrCzin et al 1973e, Wallace 
and Zia 197513). An incomplete (in our view) attempt to describe the entire critical 
region including the coexistence curve has been given by Nelson (1976). Further 
references and discussion can be found in Wallace (1976). 

( c )  There are also subtleties about the coexistence curve in Ising-like models, 
because of the existence of fluctuations corresponding to configurations in which 
large regions of the dzjferent phases coexist. Such fluctuations are not included in 
conventional graph calculations which deal with fluctuations in a single ordered 
phase; they correspond more to soliton-like objects. The cluster or droplet model 
of condensation (see Langer (1967) and Fisher (196713) for references) does attempt 
to take these into account and predicts infinitely differentiable (in H )  singularities 
at H =O. A lattice RG approach to this problem which reproduces many aspects of 
the droplet model is discussed by Klein et al (1976) (see also Subbarao 1976b). 

The specific heat and direct calculations of the free energy are discussed by 
BrCzin et a1 (1976a). 

6.1.4. Correlation functions. The two-spin correlation function has been calculated 
by several methods in E expansion. Fisher and Aharony (1973, 1974) have determined 
the scaling function A in equation (3.96) for zero external field and above Tc by 
direct exponentiation of logarithms in the Feynman graph method (Wilson 1972). 
Only the E expansion of the asymptotic form (3.104) is obtained in this way, but 
one may check consistency of the logarithms with the form (3.104). The coefficients 
may then be reconstructed. Hubbard (1974) and Combescot et a2 (1974, 1975) 
extend this calculation to H#O and T -= Tc. A proper treatment of the leading 
and next-to-leading terms for q$ f -1  was given by BrCzin et a1 (1974a, b) using 
the Callan-Symanzik equation and the operator product expansion. Some universal 
critical amplitudes associated with correlation functions are reported in BrCzin et al 
(1974~) and Aharony (1974a). More detailed discussions in the RG formalism are 
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given by Bervillier (1976). Reviews of scaling in correlation functions are given by 
BrCzin et aZ(1976a)) Fisher (1974a) and Fisher and Jasnow (1977). 

I t  is worth remarking that particularly accurate representations of the two-spin 
correlation function can be obtained by combining the scaling property with a 
dispersion relation approach using the pole and cut structure along the imaginary 
momentum axis (Ferrell and Scalapino 1975, Bray 1976). 

6.1.5. Corrections to scaling, anisotropy and crossover. This is an enormous subject 
which could be given an extensive coverage. We restrict ourselves to the following 
remarks. 

The  first question concerns the stability of the Heisenberg fixed point to perturba- 
tions by other interactions. If we take an interaction, symbolically, UMNJddXO( VM$N) 
then the coupling constant has the A dependence: 

U M N  = g&fNA d-  M-N 2)/ 2 

according to the dimensional analysis equation (5.32); gMN is dimensionless. The 
discussions of 55.3 suggest that a perturbation in UMN will be important if 

d - M - N (d - 2)/2 3 0 

and unimportant otherwise. This naive analysis is modified by the $4 interactions 
which build up powers of A4-d at each order in $4. A proper RG calculation which 
enumerates the scaling variables and calculates their critical exponents is required. 

T o  this end one notes that the RG transformation has a change of scale as the 
main ingredient. I t  commutes with O(d)  and O(n) rotations in the coordinate or 
field spaces respectively. Hence a decomposition of all possible interactions into 
irreducible representations of the symmetry group of the fixed-point Hamiltonian 
(O(d) x O(n) in this case) produces a partial factorisation of the problem of finding 
scaling variables; only interactions belonging to the same irreducible representation 
of O(d) x O(n) will be mixed. 

This result is explicit in Wegner (1972a) where the approximate recursion formula 
(Wilson 1971a, b) is used to derive exponents of scaling variables to order E .  The 
scaling variables can be written as harmonic (O(n)) polynomials of degree K multiplied 
by polynomials in $ 2  specified by K and the equivalent of a ‘principal quantum 
number’ m. I t  is also explicit in BrCzin et a1 (1974d) who study an arbitrary interaction 
uabcd+a$b$c$d. The scaling variables of the Heisenberg fixed point are the three 
Classes Of  interaCtiOnS (+2)2, #J2$af$bUab, $a$b$c$d&!abcd where Uaa = 0 = Uaacd. These 
correspond to K=O, 2, 4 in Wegner’s notation. The critical exponents have been 
obtained to rather high order in E for interactions which by their transformation 
properties under O(d) x O(n) cannot mix with other interactions and are hence 
scaling fields (Wilson and Kogut 1974 p138, Ketley and Wallace 1973, Wallace 
and Zia 1975a). Numerical investigation of the n= 3 model using the approximate 
recursion formula in three dimensions is reported by Grover et aE (1972). 

The implications of these calculations for three-dimensional systems are as 
follows. Interactions involving derivatives of fields or powers of the field O($N), 
N >  5 are irrelevant for the Heisenberg fixed point in d = 3. The critical exponents 
governing leading singularities are unaffected by such terms. Terms of order +N, N < 3 
certainly are relevant. The coefficients of such terms must be controlled to be ‘small’ 
if Heisenberg critical behaviour is to be observed. If the system is intrinsically 
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B(n)-invariant there are only two relevant variables, H and ( T  - Tc) corresponding 
to interactions +a, + 2 ;  if N and T - Tc are small one obtains the scaling equation 
of state discussed previously. If the system is not O(n)-invariant, relevant interactions 
&b$aC$b (uaa=O) and ?labc$a$b$c may be present. For the O(44) interactions we 
know that ( $ 2 ) 2  is irrelevant; it turns out that the k = 2 interaction uab#a4bC$2(&!a, = 0) 
is also irrelevant. The k = 4 interaction U@bcd$a$bb$c$bd ( u a a c d  = 0) is irrelevant 
(relevant) if n is less (greater) than a critical number, nc, which depends on d. I n  
the E expansion, no =4- 2~ + O( € 2 ) .  Nickel (1974) suggests that nc N 3 for d = 3.  
Irrelevant anisotropic interactions will affect the transverse susceptibility for T > T,, 
H-+O in otherwise isotropic systems; they are ‘dangerous irrelevant variables’. 

For relevant interactions one must go beyond linear perturbations about the 
Heisenberg fixed point, and consider the crossover scaling function, of the form 
(3.56) and (3.57) for the appropriate number of relevant variables. The effect 
of a relevant interaction may be crossover to: 

(i) A smeared behaviour with no singularities (e.g. with an external field H ) ;  
(ii) A second-order transition governed by a different fixed point, with different 

critical exponents (an anisotropic interaction Uab$a$b Will produce crossover to the 
O(m) Heisenberg fixed point if it makes m modes become critical beiore the remaining 
n - m  as T is lowered to Tc (Fisher and Pfeuty 1972)); 

(iii) A first-order transition (most 9 3  interactions and many relevant 4 4  inter- 
actions). 

A general review of multicomponent anisotropic systems is given by Aharony 
(1976b). A phenomenological discussion is given by Riedel and Wegner (1969); 
see also Fisher (1968). Development of the theory is contained in Pfeuty et al(l974) 
and Riedel and Wegner (1974). Crossover behaviour due to spin anisotropy 
is discussed by Nelson and Domany (1976) (see also Nelson and Rudnick 1975), 
Horner (1976) and Kosterlitz (1976a) to order Q and Bruce (1975) and Bruce and 
Wallace (1976) to order €2. Further discussion of the effect of 4 3  interactions is 
deferred to $6.3.2. There are many physical realisations of multicomponent field 
models with several types of 4 4  coupling. Within the E expansion and for n > 0 
one cannot obtain limit cycles or other recurrent behaviour, and critical exponents 
are real for any fixed point (Wallace and Zia 1975~). The non-availability of a fixed 
point in the space of 4 4  interactions is interpreted as implying the existence of a 
first-order phase transition (see e.g. BrCzin et al 1974d). Papers studying these types 
of models are Cowley and Bruce (1973), Aharony (1973c, 1974d), Wallace (1973), 
Yamazaki (1976b), Nattermann and Trimper (1975) (cubic point group symmetry); 
Fisher and Nelson (1974), Aharony and Bruce (1974a), Nelson et aZ(1974), Bruce and 
Aharony (1975), Aharony (1975), Fisher (1975), Domany et a1 (1977), Domany and 
Fisher (1977) (bicritical and tetracritical points); Jones et aZ (1976) and Bailin et al 
(1977) (superfluid 3He). Physical realisations of n > 4 vector models in structural 
transitions are discussed by Mukamel (1975), Mukamel and Krinsky (1975, 1976a, 
b), Mukamel et al (1976) and Bak and Mukamel (1976). Coupling of a non-critical 
field to critical fluctuations is discussed by Achiam and Imry (1975) and Achiam (1977). 

6.2. lln expansion 

Another advantage of considering the general O(n) model is that it is exactly 
soluble in the limit n-m.  This was established by Stanley (1968) who showed the 
equivalence of the classical Heisenberg lattice model in the n-+m limit with the 
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exactly soluble spherical model (Berlin and Kac 1952, Langer 1965). The  critical 
exponents are, for example : 

p= 2 L y=O (6.10) 2 
Y = C E  

and the scaling equation of state is 

HIM8 = (t/Ml/P + l)y. (6.11) 
The  development of a systematic 1 /n expansion occurred simultaneously in 

lattice models (Abe 1972) and field models where Wilson recognised that summable 
subsets of graphs dominated in the limit n+oo and at each order in lb. The  initial 
approaches produced logarithmic singularities at 1 in, e.g. 

The  logarithm then has to be interpreted as the l /n  expansion of the scaling behaviour 
xoc(T - TJ-7 with 

(6.12) 

Mere r is the usual Euler gamma function. 
We remark: 
(i) Identical results are obtained in i /n  expansion in lattice and field models-an 

explicit illustration of universality. 
(ii) The  l /n  expansion is complementary to the E expansion, being valid for all 

E(O < E < 2); the E expansion of (6.12) agrees with the l /n  expansion of (6.1). How- 
ever, the l / ~  expansion is poor numerically for a.-3, as may be expected from the 
factors, e.g. (n + 8) in (6.1). 

(iii) -4 proper RG treatment of the l /n  expansion may also be given, eliminating 
the need for the assumption of exponentiation of logarithms. 

These remarks hold for all calculations in l /n  expansion. 
The  literature on l /n  is also very extensive. (For reviews see Ma (1973b, 1976a) 

and BrCzin et al (1976a, chap X).) Applications to topics covered in 56.1 include 
Ma (1972, 1973a), Ferrell and Scalapino (1972), Parisi and Peliti (1972), Abe (1972, 
1973a), Bervillier et al (1974) (critical indices in the Heisenberg model, to order 
1/n, d arbitrary), Abe (1973b) (y to order n-2, d = 3),  BrCzin and Wallace (1973) 
(equation of state), Abe and Hikami (1973a, 1974a) (anomalous behaviour of specific 
heat amplitudes), Aharony (1973a, 1974c), Abe and Hikami (1973b) (correlation 
functions), Wallace (1973), Aharony (1974d), Hikami (1974), Bailin et al (197'7) 
(effects of anisotropy), Balian (1975) (analyticity of critical temperature as a function 
of d) ,  Ferrell and Scalapino (1974) and Bray (1974) (tests of convergence-the l / n  
expansion is certainly also asymptotic). 

6.3. The n-+O limit 

limit n-+O of various n-component models. 
It has been suggested that many physical properties can be formulated as the 

6.3.1. Polymers; the n=O Heisenberg model. It was shown by de Gennes (197213) 
that properties of repulsive chains of single polymers (i.e. in dilute solution) can 
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be obtained from the critical behaviour of the n =  0 Heisenberg model. For example, 
the exponent v governs the growth of the mean square size of a single polymer, 
proportional to MZu as the molecular weight M+m. Values for exponents can 
therefore be read off from €-expansion calculations. RG calculations on a lattice 
are given by Hilhorst (1977). Other physical properties of interest include the cross- 
over behaviour near the @ temperature, where the effective repulsive interaction 
vanishes and we have typical random walk properties with v = 3 and vanishing second 
virial coefficient. There are several field theory formulations on the market to describe 
these effects due to multipolymer interactions; their equivalence is not clear to us. 
Recent papers include Burch and Moore (1976a, b), des Cloizeaux (1974, 1975), 
Lawrie (1976) and Schiifer and Witten (1977). Mackenzie (1976) reviews scaling in 
polymers. 

6.3.2. Random systems and expansions in 6- E dimensions. A trick due to Edwards 
and Anderson (1975) relates the calculation of the mean free energy of a quenched 
random system to the n-+O limit of an average on an unquenched system composed 
of n copies of the original: 

1 In Z= Iim - (Zn-1) 
n-0 n 

-- 

where 2 is the partition function obtained by the thermal average and the bar indicates 
the average over the random interactions (see also Emery 1975, Grinstein and Luther 
1976). 

There are many different kinds of randomness; its qualitative features determine 
its effect. The  phase transition may be smeared (e.g. McCoy and Wu 1968, 1969) 
or if it remains sharp, the transition temperature will in general drop as the random 
impurity concentration increases. Typical results are that critical behaviour in a 
second-order transition in a pure system is unchanged by dilute random impurities 
if the specific heat exponent LY. is negative and shows new critical behaviour controlled 
by a new fixed point if a is positive. An interesting new feature for the random 
Ising system is the appearance of a . t /e  expansion. Principal papers on this problem 
are Harris et al (1973), Harris and Lubensky (1974), Lubensky (1975), Grinstein 
and Luther (1976), Aharony (1976a) and Bak (1976). 

Imry and Ma (1975), Lacour-Gayet and Toulouse (1974), Grinstein (1976) and 
Aharony et a1 (1976) study the case of a random external field. The  problems of spin 
glasses and percolation can also be formulated as n - d  limits. The  new feature here is 
that invariants tri-linear in the order parameter are permitted. The  coupling constant 
of such terms has dimension A(6-d)lz (see equation (5.32)) and so we expect to find 
mean-field theory ford > 6. It turns out that these models have second-order transitions 
describable by E expansions in 6-  E dimensions; the physical value is E =  3, so 
convergence is a problem but results, particularly for the percolation problem, are 
rather encouraging. Principal references are Kasteleyn and Fortuin (1972), Harris 
et al (1975), Young and Stinchcombe (1975), Priest and Lubensky (1976), Kirk- 
patrick (1976), Dasgupta (1976), Amit (1976), Amit et a1 (1977) (percolation problem); 
Sherrington and Kirkpatrick (1975, 1977) and Harris et a1 (1976) (spin glasses and 
validity of n+O limit). 

Models with trilinear couplings have been suggested for physical systems, other 
than the above n-+O limits. The  n-component Potts model (whose n+O limit de- 
scribes the percolation problem above) has been proposed for some magnetic and 
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displacive transitions (Weger and Goldberg 1973, Mukamel et a1 1976, Aharony et 
a1 1977), and a tensor model has been proposed for the isotropic to nematic transition 
in liquid crystals (de Gennes 1969, 1972a). Although E expansions in 6 - E dimensions 
can exist for these models (Priest and Lubensky 1976, Amit 1976) there is evidence 
that the $3 fixed points are unstable to 4 4  perturbations (Wallace 1977) and that 
these models have first-order phase transitions in three dimensions (Golner 197313, 
Aharony et a1 1977, Amit and Shcherbakov 1974, Rudnick 1975b, Zia and Wallace 
1975b). However, note Baxter (1973) for exact results in two dimensions. 

6.4. Tricritical behaviour and $n ( n  > 4) jield theories 
If a thermodynamic system has a third parameter (in addition to T - Tc and 

an external field) which can be used to vary the size of the $4 coupling, then a tri- 
critical point may exist in which this effective coupling vanishes. At this tricritical 
point, the system is dominated by $6 interactions and hence according to equation 
(5.32) and the subsequent discussion mean-field theory holds for d > 3 and in d = 3 
is altered only by logarithmic corrections. 3He and 4He mixtures, and polymers 
at the 0 temperature (see $6.3.1), are examples of such systems. The crossover 
from critical behaviour controlled by the Heisenberg fixed point to tricritical be- 
haviour controlled by the Gaussian (free-field) fixed point is discussed by Riedel 
and Wegner (1969), Griffiths (1973) and Schulman (1973) (phenomenologically). 
The RG approach is outlined by Riedel and Wegner (1972) and discussed by Nelson 
and Rudnick (1975), Lawrie (1976), Nicoll et a1 (1976) in E expansion ( ~ = 4 - d ) ,  
and by Amit and De Dominicis (1973) in l / n  expansion (see also BrCzin et a1 1976a). 
Exponents can be calculated (at lowest order in the appropriate E) for multicritical 
fixed points controlled by 4 2 N  interactions in d = 2N/(N- 1) - E dimensions (Stephen 
and McCauley 1973, Tuthill et a1 1975). 

Tricritical behaviour has also been studied extensively using the RG in lattice 
models (see for example Krinsky and Furman (1974), Burkhardt and Knops (1977) 
and references therein). 

6.5. Systematic RG expansions at low temperature 
It is known that Ising and Heisenberg models have a critical dimension dc below 

which they have no phase transition at any finite temperature; dc = 1 for Ising models 
and 2 for %-component Heisenberg models (short-range interactions) (see Widom 
1973, Mermin and Wagner 1960, Hohenberg 1967, Coleman 1973). One may expect 
that these models have Tc small in 1 -t. E and 2+ E dimensions respectively. If 
systematic low-temperature approximations can be made in RG calculations one 
may hope to obtain another E expansion to complement the usual ones in 4 - e  
dimensions. 

Approximate lattice calculations were used by Migdal (1975b) to set up lowest- 
order E expansions for Ising and Heisenberg (%> 3 )  in dc+ E dimensions. The  
approximations give reasonable numerical results also in fixed dimension. However, 
systematic higher orders in E are not yet obtainable in this approach. A field theory 
approach for n> 3 Heisenberg models due to Polyakov (1975) was developed by 
BrCzin and Zinn-Justin (1976b, c) and Br6zin et a1 (1976b, c) to make systematic 
calculations possible. Principal critical exponents corrections to scaling, anisotropic 
effects (see also Pelcovitz and Nelson 1976), equation of state, etc, are all calculable. 
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The l /n  expansion is also revealing (see also Hikami 1976). The basic idea of the 
calculations is to exploit the existence of (n- 1) Goldstone modes whose critical 
fluctuations dominate coexistence curve behaviour (see 96.1.3). One therefore studies 
models obtained from the usual Heisenberg model field theory by eliminating the 
longitudinal field by the constraint + 2  = constant. This yields the static analogue 
of a spin-wave theory. 

The  case n=2 is special. I t  cannot exhibit spontaneous magnetisation in two 
dimensions (Mermin and Wagner 1960, etc, above) but does have a finite phase 
transition temperature at which singularities develop (see Berezinskii 1971, 1972, 
Kosterlitz and Thouless 1973, Kosterlitz 1974). The effects are probably too subtle 
to be reliably reproduced by the RG methods of $4, as attempted by Lublin (1975). 
A recent attack was made by JosC et nl(1977). 

6.6. Long-range interactions 

So far we have considered only short-range interactions. It turns out that long- 
range interactions are relevant perturbations of the short-range Heisenberg fixed 
point and therefore give rise to new critical behaviour. The  most significant result 
to date in this field was remarkably the first one, by Larkin and Khmel'nitskii (1969) 
who showed that uniaxial systems dominated by dipolar interactions would show 
mean-field behaviour modulated by logarithmic terms. These logarithmic features 
have subsequently been observed experimentally in LiTbF4 by Ahlers et a1 (1975); 
see also Als-Nielsen (1976). 

6.6.1. 1/Rd+" interactions. If the exchange coupling in the lattice model falls off 
like l/R&+" for large spin separation R, this gives rise to a term J&?s(K)s( -k) in the 
field theory Hamiltonian. 

Naive dimensional analysis indicates this will dominate over the usual k2 term 
if cr< 2, and RG analysis shows it is relevant if a <  2-7. Given that the k" term 
then becomes dominant, further analysis shows that the $4 coupling has now dimen- 
sion Ad-2" so that mean-field behaviour holds for d > 2a and an E expansion can 
be set up in Zu- E dimension. Calculations paralleling those of 596.1-6.5 can now 
be performed (see Aharony (1976b) for a review). Principal references are Fisher et 
aZ(1972), Sak (1973), §uzuki et a1 (1972), Suzuki (1972, 1973a, b, c) and Yamazaki 
(1976a). Exchange interactions which fall off like R-X (x<2)  produce a finite Tc 
in one dimension; Kosterlitz (1976b) sets up an expansion with Tc of order (2-x), 
in one dimension. 

6.6.2. Dipolar interactions. Dipolar interactions fall off like 1/Rd but the angular 
dependence of the interactions distinguishes them from the case o=O of the above. 
They are present in ferroelectric and magnetic transitions. The dipolar interaction 
has much lower strength than the short-range exchange interaction in magnets 
except for those with weak exchange, i.e. low critical temperature. 

Dipolar antiferromagnets are predicted to have the same critical behaviour as 
in the short-range case apart from some weak anisotropy effects. Dipolar ferro- 
magnets are described by a strong dipolar fixed point; no matter how small the 
initial dipolar interaction, its effect becomes dominant towards the critical point. 
The  size of the dipolar-dominated critical region is very small except for magnets 
with a very low Tc. Values of exponents at the dipolar-dominated fixed point are 
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numerically very similar to the short-range exponents, but crossover effects may 
be observable (for a review see Aharony 1976b). Main references are Aharony and 
Fisher (1973), Aharony (1973b), Bruce and Aharony (1974), Bruce (1974, 1976), 
Rharony and Bruce (1974b), Bruce et a1 (1976), and Nattermann and Trimper (1972, 
1976). 

The  uniaxial dipolar interaction is a special case as mentioned earlier. References 
subsequent to Larkin and Khmel’nitskii (1969) are BrCzin (1975a, b), Bervillier 
(1975), Nattermann (1975) and BrCzin and Zinn-Justin (1976a). 

6.6.3. Other long-range interactions. Aharony (1974b) has studied quadrupolar 
interactions. 

When the lattice is allowed to become elastic, and the spins in a magnetic system, 
for example, are coupled to phonons, then long-range effects also arise: see Aharony 
(1973d), Wegner (1974b), Sak (1974), Rudnick et a1 (1974), Imry (1974), and Dohm 
and Kortmann (1974). 

It is predicted (Halperin et al 1974c) that the long-range electromagnetic inter- 
actions will produce a small first-order transition in the superconducting phase 
transition. This is the non-relativistic analogue of what is called the Coleman- 
Weinberg (1973) phenomenon in relativistic quantum field theory. 

Long-range interactions are also effectively built into so-called hierarchical 
models, which can be exactly solved by the RG method (Dyson 1969, Baker 1972, 
Gallavotti and Knops 1975, Baker and Golner 1977). 

6.7. Dynamical critical phenomena 

The extent of this subject really demands an entire review article to itself. Dy- 
namic properties typically enter when one performs inelastic scattering experiments 
using light beams or neutron beams. The  quantity measured is the dynamical 
structure factor e(q, w), the Fourier transform with respect to space and time of the 
time-dependent correlation function: 

G(x, 7) = ((9% 7) - <fd(x, 4))(45(0,0> - <#(O, 0)))) 
e(q, w )  = f ddxd7 exp [ - i(qx - UJT)G(X, T ) ] .  

Here (b is the density (e.g. particle density, magnetisation density, etc) by which 
the beam is scattered; it is not necessarily a scalar quantity but we drop indices 
on the field for simplicity. An introduction to dynamic phenomena is given in 
Stanley (1971). 

A phenomenological scaling theory can be set up for e(q, w )  close to the critical 
point (Ferrell et al 1967, 1968, Halperin and Hohenberg 1969). The  additional 
ingredient is the assumption of an exponent x associated with the frequency variable 
U ,  so that in the usual magnetic notation: 

Q, w, t ,  M )  =bz-’G(bq, bzw, b W ,  bp/”M) 
i.e. 

G(q, o, t ,  M )  = q-2+qt(wq-z, tq-llv, Mq-””). 

The  exponent x therefore governs the characteristic frequency, and hence time 
scale T q  of modes of wavevector q :  TqCCq-z at the critical point. Evidence for the 
dynamic scaling hypothesis is reviewed in Stanley (1971). 
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An introduction to microscopic models for describing dynamic phenomena is 
given by Ma (197613). The  starting point is a Langevin-like kinetic equation for 
+(x, T ) / ~ T  (or its Fourier transform with respect to x). The three terms in this 
equation describe typically the coupling to other modes, a damping force and random 
noise. These equations are not time-reversal-invariant and can describe relaxation 
processes, etc. They are best thought of as semi-microscopic equations with the 
random noise being due to modes with very short time scale which are not explicitly 
included in the kinetic equations. The  form of the damping must respect all 
conservation laws in the system. 

The  main aim of the RG is a successive elimination of the modes with longer and 
longer relaxation times. The  problem can be studied by E expansions using a modified 
Feynman graph approach. The  RG now operates in a space of couplings which includes 
damping coefficients as well as the static couplings. A major feature of the results 
is that systems with the same static behaviour may have very different dynamic 
properties, depending on the existence of coupling to other modes, or of conservation 
laws. 

For an introduction to the RG approach, we refer the reader to Ma (1976b). Ori- 
ginal references using the RG are Halperin et a1 (1972, 1974a, b, 1976), Ma and 
Mazenko (1974, 1975), Suzuki and Igarashi (1973), Suzuki and Tanaka (1974), 
Yahata (1974a, b), Kondor and SzCpfalusy (1974), Abe and Hikami (1974b), Abe 
(1974), Freedman and Mazenko (1975) and Kawasaki and Gunton (1976). The  
inulticomponent Bose fluid is considered by Halperin (1975a). Field theoretic 
techniques are a powerful tool also in dynamics: see De Dominicis (1975), De 
Dominicis et a1 (1975), BrCzin and De Dominicis (1975) and Bausch et a1 (1976). 
Other early RG references may be found in Halperin’s (197513) review talk. Very 
recent progress includes discussion of deviations from scaling (De Dominicis and 
Peliti 1977) and application of expansions in 2+ E dimensions (De Dominicis et 
a1 1977). 

6.8. Applications in relativistic quantum field theory 

In  this section we aim only to outline the philosophies behind the use of the RG 
in elementary particle physics. We thereby totally under-represent the role which 
this subject has played in the development of the RG. 

We have already remarked that relativistic quantum field theories (RQFT) in 
three space and one time dimension are mathematically analogous to classical statis- 
tical mechanics in four space dimensions (95.5). In  statistical mechanics we have 
been studying infrared properties of a theory defined by a meaningful Hamiltonian 
with some form of cutoff at high momentum. Since space and time are continuous 
and have no discrete lattice structure to our knowledge, it is conventional in ele- 
mentary particle physics to assume that there is no cutoff and no meaningful ‘bare’ 
Hamiltonian. It is therefore unconventional to describe elementary particle physics 
as an infrared phenomenon, mathematically analogous to phase transitions ; model 
calculations have been done (Wilson and Kogut 1974 p138, Wilson 1973, Shei 
and Yan 1974, McKane et a1 1976) but all of them have defects in three space and 
one time dimensions. 

The  conventional approach is to set up the theory so that effective couplings 
when momenta are at the physical mass scale-say at threshold-are free parameters 
which can be fitted to experimental values. One then proceeds to ask how the effective 
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interactions change as one looks at high momenta (short distances). Different types 
of experiments can probe different high momentum regions, e.g. scattering at large 
energy and momentum transfer in electron nucleon, neutrino-nucleon and proton- 
proton, or more general hadron-hadron, collisions. In  a naive approach, one attempts 
to make simple models in which masses m can be dropped in the limit momenta 
q$m.  One thereby obtains power law behaviours 4". If all mass scales disappear 
in the limit q B m ,  then the powers a are determined by naive dimensional analysis. 
This approach provides a good phenomenological description of large momentum 
transfer (deep inelastic) electron-nucleon and neutrino-nucleon scattering (see 
Llewellyn-Smith (1972) for an introduction). In  a field theory this result would 
be analogous to obtaining mean-field exponents with all interactions negligible. 

I n  order to reproduce this behaviour of zero effective interactions at short distances 
in a field theory, one needs the zero interaction fixed point of the RG to be attractive 
as one goes to high momenta. Such a theory is called asymptotically free. I t  has 
been shown that non-Abelian gauge theories (see Taylor (1976) for an introduction) 
can be asymptotically free (Politzer 1973, Gross and Wilczeck 1973, G 't Hooft 
unpublished) and that they are the only kind of field theories with this property in 
four dimensions (Coleman and Gross 1973). As with 4 4  theories in four dimensions 
additional logarithmic dependence is predicted on top of the scaling obtained by 
naive dimensional analysis. Observed violations of scaling may be due to other 
factors, however (see Politzer (1974) for a review). 

The fact that effective couplings become weak at short distances in non-Abelian 
gauge theories has the converse that they become strong at large distances. Current 
research is attempting to show that these forces may be sufficiently strong to bind 
permanently particles which experience them. If this can be achieved then one may 
be able to realise a RQFT of elementary particles as bound states of quarks which 
cannot themselves be observed in isolation-quark confinement. In  studying this 
problem it has been found fruitful to introduce lattice versions of non-Abelian 
gauge theories (Wilson 1974a)) with physics to be obtained by taking a suitable 
limit of zero lattice spacing. Migdal (1975a, b) has shown how to set up approximate 
RG on a lattice for these models. The absence of a phase transition at any finite 
temperature (in the lattice theory) is required to produce quark confinement. This 
appears to be a property of non-Abelian theories in four dimensions, but fortunately 
not of the Abelian theory quantum electrodynamics (cf 36.5). A review is given by 
Kadanoff (1977). 

Non-Abelian gauge theories may also provide the vehicle for unified theories 
of weak and electromagnetic interactions of elementary particles. RG calculations 
play an important role here also (see, for example, Georgi et a1 1974). 

Finally we remark that a totally different application of the RG has been made in 
the so-called Reggeon field theory of high-energy scattering (see Abarbanel et a1 
(1975) for a review). 

6.9. Remarks on other problems 
Scaling properties in turbulence have been recognised for a very long time (see 

Kraichnan (1975) for a review). Attempts have been made to apply the RG to this 
problem (see Forster et a1 1976, Frisch et a1 1976). 

The RG has been successfully applied to the Kondo problem-dilute magnetic 
ions in a conductor. For a review and further references see Wilson (1975). 
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The  quantum properties of spins should not play an important role in phase 
transitions, except in the limit of zero temperature. In  fact, the quantum Ising model 
in a transverse magnetic field at T = 0 and d dimensions is equivalent to the classical 
Ising model in d + l  dimension, the transverse field in the former playing the role 
of the disordering field, the temperature in the latter. This was shown for d = l  
by Pfeuty (1970) and Suzuki (1971). The generalisation to arbitrary d was con- 
jectured by Pfeuty and Elliott (1971) and others. It is justified by the techniques 
of Stoeckly and Scalapino (1975). 

Scaling behaviour at zero temperature is discussed by Baker and Bonner (1975) 
and RG transformations on quantum lattice systems by Young (1975) and Brower et 
al (1977). Niemeijer-van Leeuwen type of calculations on d = 2  quantum systems 
have been used to estimate the standard d = 3 critical exponents (Friedman 1976, 
Subbarao 1976~). 

The electron gas in one dimension is of great current interest. We refer the 
reader to the reviews by Luther (1976) and Solyom (1976). 

The  existence of critical exponents depending on a continuous parameter in 
the Baxter model (Baxter 1972) is understood in the RG as due to a line of fixed points 
(see, for example, Kadanoff and Wegner 1971, van Leeuwen 1975). The  Thirring 
model (see e.g. Wilson 1970) displays similar behaviour in two dimensions. 

In  a finite magnet, all spins within a correlation length of a surface will feel the 
effect of that surface. Generalised scaling properties have been introduced for 
semi-infinite systems. References are contained in Binder and Hohenberg (1972), 
Barber and Fisher (1973), Lubensky and Rubin (1975) and Bray and Moore (1977). 

6.10. Conclusions 

The breadth of applications of the renormalisation group should be clear from 
the previous sections. There is no doubt that the range of applications will continue 
to grow. Of course, conclusive experimental verification of many of the predictions 
may never be possible but it is fair to say that there is overwhelming evidence for the 
gross features predicted by the renormalisation group-leading critical exponents 
and scaling functions of Heisenberg-like models and the logarithmic singularities in 
uniaxial dipolars, for example. 

Although the practical success of the renormalisation group is well established, 
there are several fundamental aspects which are still at best only partially understood. 
This is particularly true in lattice model calculations. For example, under what 
conditions is one guaranteed to find fixed points of the transformation rather than 
some more complicated behaviour and what are the convergence properties of the 
approximation schemes? 

No doubt this subject will be a hunting ground for theorists for some years 
to come. 
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