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The use of neural networks to classify detector events by particle type and evaluate the strength
of variables as classifiers is explored. Two types of perceptron network are trained on a computer-
simulated monte carlo dataset that identifies the event as a neutron or a neutrino, then gives a
list of data values for the event. The first network– which optimized a single hyperplane cut–
achieved a significance of 100, and the second network– a more sophisticated model with four ReLu
processing neurons– achieved a significance of 146, outperforming the decision tree used previously
for the CHANDLER detector. Subsequently, separate iterations of these networks were trained on
1-gamma and 2-gamma events to allow them to isolate features individual to these classes of events.
This procedure found that 1-gamma events were classified very poorly by both networks, so a new
variable that measures the escape probability of the second gamma was introduced, achieving a
small improvement at selecting for 1-gamma IBDs. An alternative method of separating 1-gamma
IBDs from 2-gamma IBDs was also found through the analysis of 2-d histograms, which improved
the classification rate further. Finally, a new reward function that optimized for significance directly
was introduced to train the neural network, greatly reducing the amount of manual tuning and re-
learning needed to train an effective network. The combination of all of these achieved a significance
of 170, outperforming all prior classification methods.

I. INTRODUCTION

Neutrino detection is a difficult endeavor in experimen-
tal physics. The only standard model force these particles
interact through is the weak nuclear force, which has an
extremely short range, meaning that detectable neutrino
interactions are exceptionally rare. Thus, most neutrino
detectors are buried deep underground to eliminate cos-
mic ray backgrounds that would otherwise swamp the
neutrino signal. However, the MiniCHANDLER detec-
tor, which weighs only 80 kg and can be moved any-
where by a small trailer [1], can discern the electron an-
tineutrino spectrum from a nuclear fission reactor with-
out any overburden to eliminate cosmic ray and other
backgrounds. The analysis of this neutrino spectrum
can discriminate between uranium fission reactions used
for civilian energy and plutonium breeding used for nu-
clear weapons manufacturing without any foreknowledge
of what went into the reactor. Thus, improved itera-
tions of MiniCHANDLER– like the 1-ton CHANDLER
detector currently in development– have the potential to
revolutionize nonproliferation diplomacy.

The shieldless detection of neutrinos is possible
through specialized detector hardware and data analysis
procedures that leverage the particular signature of in-
verse beta decay (IBD), the interaction where an electron
antineutrino collides with a proton yielding a positron
and a neutron.

ve + p → e+ + n

The MiniCHANDLER detector has a 3-dimensional
layered structure which vertically alternates between a
lattice of plastic scintillator cubes and a thin neutron
capture sheet. When an energetic charged particle ion-
izes molecules in the plastic scintillator, it gives off a short

pulse of visible range photons. Conversely, when a neu-
tron thermalizes in the detector, its capture on Lithium
6 in the neutron sheet results in the emission of a long
pulse of photons which is easily discernible from the plas-
tic scintillator signal. The light is then channeled down
the row and column where the event occurred by total
internal reflection in the lattice and detected by an ar-
ray of photomultiplier (PMT) tubes. This channeling
allows the positions of energy depositions to be recon-
structed from PMT data. Because an IBD event pro-
duces a positron and a neutron, it will always be marked
by a short plastic pulse followed by a nearby long neu-
tron pulse. This allows for the elimination of background
gamma rays, charged particles, and thermal neutrons, as
these events display only one of the two components of
an IBD event.

Fast neutrons from cosmic rays, however, pose a prob-
lem for this method of IBD discrimination. When a high-
energy neutron enters the detector, it can collide with and
scatter protons, which produce short pulses, and then
capture in a neutron sheet, producing a long pulse. This
can falsely mimic IBD coincidence and hamper the spec-
tral analysis needed for nonproliferation applications of
this detector. Thus, a method for discriminating between
protons and positrons is needed. When a positron fin-
ishes depositing its energy in the detector, it annihilates
with an electron and produces two anti-parallel 511 KeV
gamma rays, whereas a proton quietly assimilates with
the material and produces no gamma rays. These gamma
rays can then Compton scatter in the detector, produc-
ing additional clusters of short pulses. To leverage this
distinction between protons and positrons, an algorithm
must be made that can discriminate between a cluster of
energy depositions from Compton scattering and a clus-
ter of energy depositions from scattered protons.

The CHANDLER team broke this algorithm into two
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steps. First, the energy deposition data is processed into
variables that capture important geometric information.
Such variables include the distance between the positron
candidate and the neutron capture, the energy deposited
by the Compton cluster candidates, the distances be-
tween the positron candidate and the Compton cluster
candidates, and the angle between the two Compton clus-
ter candidates with the positron candidate as the vertex.
These variables must then be run through a program that
makes a decision on the event’s identity. This second
step is difficult for a human to program intuitively, as
it involves the statistics of how correlated the different
variables are to the event type. To evaluate these cor-
relations, a machine learning algorithm can be trained
on computer-simulated Monte Carlo data. While parti-
cle identification can never be perfectly accurate due to
the huge variety of possible particle events, a machine
learning algorithm trained on strong indicator variables
is likely the best approach to dealing with this variety.

II. CLASSIFICATION BACKGROUND

A. Decision Trees vs. Neural Networks

Currently, the CHANDLER team uses a decision tree
to optimize the separation of neutrons and IBDs. At each
fork in the tree, a single variable is measured, and events
whose value of that variable fall below the cut point go
one way in the tree, and those with a value above the cut
point go the other way [2]. Through a series of these cuts,
the data is divided into many groups, and each of these
groups is labeled as neutrons or IBDs. If the dataset is
visualized as a many-dimensional hyperspace where the
variables give the coordinates of events in that hyper-
space, the decision tree cuts the space into many boxes,
where the hyperplanes making up the sides of the boxes
are orthogonal to the basis vectors of the space. Each
box is then designated to contain neutron events or IBD
events by the decision tree. Through the combination
of many boxes, any more complicated identity boundary
can be approximated. However, the approximation will
have a toothed edge, where the corners of the boxes cut
back and forth across the ideal division boundary. This
means that many points near the boundary can be mis-
classified. A perceptron neural network, however, uses
hyperplanes as the building block of decision boundaries
[3]. These can take any orientation, unlike the decision
tree boundaries which are limited to cuts perpendicular
to basis vectors. This allows complex shapes to be ap-
proximated as polygonal solids, reducing the error near
the boundary. Additionally, the hyperplanes don’t have
to be binary cuts- they can give a score to each event
based on how far it is from the surface, resulting in a
soft boundary that gives the probability of the event’s
identity. These many soft boundaries can be combined
into rounded polygons that can effectively approximate
identity boundaries.

B. Quantifying Classifier Performance: Significance

The metric used to evaluate the performance of a given
classification method is based on the scenario where the
CHANDLER detector is placed next to an array of mod-
ular reactors, and the classification method tries to de-
termine whether the reactor closest to the detector has
turned off. Significance is the square of the z-score of
the null hypothesis that the reactor’s operation has not
changed. While this method of performance evaluation
is somewhat arbitrary, it captures how well a classifica-
tion method parses the IBD signal in an environment
where noise vastly outnumbers signal. An evaluation of
how well a classification method determines the energy
spectrum would be truer to the end goal of this enter-
prise, but also far more difficult to quantify and optimize
on in practice. As long as the classifier doesn’t use the
event’s total energy as a determining condition, the sig-
nificance parameter should correlate positively with good
spectrum measurement. Significance can be calculated
using the following formula:

significance =
signal2

(signal + 2 ∗ noise)
Where signal is the number of correctly identified IBDs
expected per 24 hours and noise is the number of neu-
trons incorrectly identified as IBDs per 24 hours. At the
start of this process, the decision tree achieved a signifi-
cance of 130, which means that a statistically significant
difference could be detected within 45 minutes of a re-
actor unit’s shutoff. This will serve as a benchmark to
evaluate the success of neural networks as classification
methods.

III. NEURAL NETWORKS AND 1 VS 2
GAMMA EVENTS

A. Conventionally Optimized Networks

In this analysis, neural networks were coded in Python
using the NumPy library. The first network tested was a
perceptron with 25 input neurons and one output neuron.
This network classifies based on a single hyperplane cut
through the dataset space- the input vector is dot multi-
plied by the weight vector and added to a bias. To opti-
mize classification, the square of the difference between
the event’s identity (1 for IBDs and 0 for neutrons) and
the predicted probability of being an IBD (float between
0 and 1) was minimized. This maximizes the percent
accuracy of the network, but does not take into account
the fact that false positives are far costlier than false
negatives in a high noise environment. To account for
this, the network was trained on 5 neutron events for ev-
ery IBD event to skew it towards negative identification.
This method achieved 92 significance, which is good for
a single planar cut. To improve the performance, the re-
dundancy and relevancy of variables was explored. The
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25 variables used as input are educated guesses at what
qualities of an event could indicate its identity, so they
are not guaranteed to improve classification. To inves-
tigate the variables, 1000 1-hyperplane networks were
trained on the dataset, and the mean distance of each
weight from the average initialization value was divided
by the standard deviation of the weight over the 1000
networks to obtain a z-score for the weight’s training. If
a given weight always trained to close to the same value,
its corresponding variable is likely an important classifier.
Conversely, if the weight is left close to the initialization
value or is trained to a pseudo-random number, it is likely
an unimportant or unclear classifier of variables. Upon
running this test, two variables– capture time and cluster
multiplicity– had by far the lowest z-scores, at 0.15 and
0.07 respectively. When these variables were removed
from the training set, reducing the number of inputs to
23, the 1-plane perceptron improved to 100 significance.
This makes sense because capture time is known to be
a poor indicator of particle identity, and cluster multi-
plicity is redundant because it is the sum of cluster 1
multiplicity and cluster 2 multiplicity. However, when
three other variables whose z-score ranged from 0.45 to
0.65 were removed, the network’s performance worsened.
Thus, these variables are likely weak but useful classi-
fiers for the network. Possibly, the identity boundary in
the space of these variables is sufficiently nonlinear that
many different weight combinations are similarly effective
classifiers.

The next perceptron had four processing neurons in
between the inputs and outputs, each of which used a
ReLu activation function. This network draws four hy-
perplanes in the dataset space, giving a positive score
proportional to distance on one side of the hyperplane
and a score of 0 on the other side. This allows each
processing neuron to specialize on classifying some types
of events and turn off for other types. This network
achieved 146 significance, outperforming the decision tree
by 16. Training the network was somewhat labor in-
tensive, as to achieve optimum performance the network
needed to be trained at a certain learning rate, saved,
and then trained at a lower learning rate to fine-tune.
This significance was achieved after four rounds of train-
ing at learning rates that were manually selected for op-
timum performance. The reduced set of 23 inputs was
used, as the 25 input training performed worse on first
training runs, indicating that the removed variables were
poor classification contributors beyond the 1-plane net-
work. Networks with 2 to 20 processing neurons were
tried, but 4 neurons performed the best. This is likely
because the crude inaccuracy-based method of training,
which had to be manually slanted to maximize signifi-
cance, failed to guide the more complex networks to a
minimum due to the reduced proportion of IBD training
data.

B. 1-Gamma 2-Gamma Sorting

For some events, both annihilation gammas Compton
scatter in the detector. For others, however, one (or occa-
sionally both) of the gammas escapes the detector with-
out leaving an energy trace. The latter group of events
is much harder to classify because it leaves less geometri-
cal information in the detector. The set of particle events
can be partitioned into 2-gamma and 1-gamma candidate
groups based on the SoLid cluster algorithm, which draws
a plane through the positron candidate that is perpendic-
ular to the line connecting the highest energy Compton
candidate with the positron candidate [4]. The barycen-
ter of the hits on the max-energy side of the plane is
calculated by taking the weighted average of their po-
sitions, and the line connecting this barycenter to the
positron candidate defines the normal for the final plane.
If energy is seen on both sides of this plane, both anni-
hilation gammas could have scattered in the detector. If
energy is only seen on one side of the plane, it is presumed
that one of the annihilation gammas must have escaped
if the event is a IBD. When the 146 significance param-
eters were tested individually on SoLid-classified 2 and
1-gamma events, they attained a significance of 138 on
the 2-gamma events, but only reached 10.6 on 1-gamma
events. This is because it is more likely for a neutron
to mimic the geometry of a 1-gamma event than a 2-
gamma event, as less information is available when one
of the gammas escapes. As a result, high-energy neutrons
outnumber IBDs by 118 to 1 in the 1-gamma regime, but
only 19 to 1 in the 2-gamma regime. 2-gamma events also
have two other parameters that can aid in classification–
the distance between the positron candidate and the clus-
ter 2 candidate and the angle between the two clusters
with the positron at the vertex. Thus, it is much easier to
parse signal from 2-gamma events than 1-gamma events.

Due to the differing geometry of 1-gamma and 2-
gamma events, sorting the events into two separate
datasets by this criterion and training separate networks
on the two sets could allow the networks to specialize
on particular qualities of the two categories. Addition-
ally, because the 2-gamma set has two more variables
than the 1-gamma set, training on the combined set re-
quired the substitution of dummy variables for 1-gamma
events. However, pre-sorting did not immediately yield
the expected success. The 1-plane perceptron performed
about the same on 2-gamma events as on the combined
set but classified abysmally on the 1-gamma set with sig-
nificance no better than the unclassified set. The 4-plane
ReLu perceptron performed about the same on 2-gamma
events whether it was trained on just 2-gamma events or
the combined set, but could not gain a foothold on the
1-gamma set, achieving only significances around 3. This
is somewhat surprising, given that the network trained
on the combined set achieved a significance of 10.6. One
explanation is that 2-gamma and 1-gamma events have
some similar distinguishing characteristics between neu-
trons and IBDs, but these identity boundaries are far
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weaker classifiers in the 1-gamma dataset, making them
harder for the network to find. If an identity boundary
in a dataset is weak, the gradient forces guiding the net-
work towards the identity boundary are weaker, making
it more likely that the network becomes caught in false
minima that are suboptimal. Thus, the presence of 2-
gamma events could guide a network to a more optimal
classification of 1-gamma events.

C. 1-Gamma Variable Attempts

A few attempts were made at creating additional ge-
ometric variables to distinguish 1-gamma IBDs from 1-
gamma neutrons. The first variable was the angle be-
tween the line connecting the positron candidate and
the highest Compton hit and the shortest path from the
positron candidate to the face of the detector (Figure 1).
This parameter assumes that the highest energy Comp-
ton hit is the first Compton scatter of the trapped gamma
and that the missing gamma probably escaped perpen-
dicular to the nearest face along the shortest path from
the positron to the detector edge. A large angle indicates
an IBD, as the missing gamma is more likely to be anti-
parallel to the first. Another variable attempt measured
the length of the path the second gamma would have to
take to escape the detector (Figure 2). It was again as-
sumed that the highest energy Compton hit was the first
scatter.

FIG. 1. θ = escape angle

FIG. 2. Escape distance

When tested individually, optimal cuts to both vari-
ables improved the signal-to-noise ratio a small amount,
but did not improve significance. This indicates that
these variables are weakly correlated with 1-gamma event
identity. Putting these variables into the training set did
not improve the network performances, however. The
limited success of these variables is likely caused by two
factors– the highest energy compton scatter often isn’t
the first and the location of the hits within a scintillator
cube is not known. These two factors make estimates
of the paths of the first and second gammas imprecise,
which smears estimates of how likely the second gamma
is to escape. To deal with the first issue, an escape score
was created that sums the probability of escape for all
Compton hits. It is first assumed that the highest en-
ergy hit is the first Compton scatter, and then for each
other hit the chance of that hit being the first scatter
instead is calculated. If the max energy hit is not the
first scatter, the gamma must have enough energy left
after the actual first scatter to deposit the max energy.
Thus, the maximum allowed scatter following the hit be-
ing tested can be compared to the actual maximum hit
to obtain a first Compton probability. A second adjust-
ment compared the expected scattering angle with the
measured scattering angle to obtain another probability.
The product of these two probabilities approximates the
chance that the given hit instead of the max hit is the
first scatter. Each hit’s chance of being the first scatter
is then multiplied by the chance a gamma traveling anti-
parallel to that hit would escape. This was calculated by
dividing each escape distance by the 10.6 cm attenuation
length of 511 KeV gammas and raising 1/2 to the power
of the result. Finally, these products were summed for
all hits, and to obtain the final escape score, the sum was
normalized by dividing by the sum of all first Compton
probability scores. Thus, this parameter accounts for and
weights all possible ways the second gamma could have
escaped.

FIG. 3. Escape probability weighted by first Compton prob-
ability

This parameter performed somewhat better than the
first two, with cuts improving the significance by about
3% and the signal/noise ratio by about 20%. Interest-
ingly, the score calculated without the scattering angle
adjustment boosted significance twice as much as the
score calculated with this adjustment. This is because ac-
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counting for scattering angle lowered the probability that
low-energy hits could be the first hit, making it harder for
an event to achieve a high score. This reduced the num-
ber of neutrons and IBDs that achieved a higher score,
and because the prism size made angle uncertainty quite
high, this reduction didn’t improve the signal/noise ratio
enough to make up for the overall loss of events. Be-
low are escape probability histograms of 1-gamma events
calculated with various methods. These events are also
selected to have a best pairing angle below 90 degrees.
This eliminates L-shaped 2-gamma events where the two
first scatters occurred in perpendicular neighbor cubes,
which the SoLid clustering algorithm often mistakes for
1-gamma events.

FIG. 4. IBD Escape Score: assuming highest energy scatter
is first

FIG. 5. Neutron Escape Score: assuming highest energy scat-
ter is first Compton scatter

Although IBDs are more likely to be classified with
a high escape score than Neutrons, many neutrons still
make it into the high escape score regime, and many
IBDs are classified with an escape score near 0. The
former issue is likely due to the sheer number and variety
of neutron noise events, which allows for a significant
number to look like 1-gamma IBDs by random chance.
The latter issue, however, is likely due to the uncertainty
in event position. The detector can reconstruct which
plastic prism an energy deposition occurred in, but is
blind to the exact location within the prism. This allows
for cases where the central approximation escape score

FIG. 6. IBD Escape Score: energy-based first Compton prob-
ability

FIG. 7. Neutron Escape Score: energy-based first Compton
probability

vastly underestimates the actual probability of escape.
Unfortunately, adding the parameter to the neural net-

works did not improve their 1-gamma performance. To
improve the effectiveness of this variable, all possible lo-
cations of the positron and Compton hits in the prisms
could be accounted for by averaging the escape proba-
bility of all possible paths through the two hit prisms
with a 6-dimensional integral. This integral can be ap-
proximated numerically by simulating a large number of
random location combinations in every possible pair of
prisms and recording the average escape probability of
the anti-parallel gamma in a dataset. This dataset could
then be referenced whenever the escape score of a partic-
ular pair of prisms is needed. Because of the detector’s
planar symmetries, the positron hit would only have to
be varied over one octant of the detector to capture all
possibilities. Additionally, the number of events decays
as the first Compton distance increases, and the number
of random positional pairs that needs to be tried to accu-
rately capture the escape score decreases as the angular
variation of the path decays with distance.
Thus, the number of random positions simulated per

prism pair could exponentially decay from 10000 for adja-
cent pairs to 1000 for pairs 10 cube lengths apart. A pro-
gram with these cuts was written in Python, and using
small sampling runs it was estimated that the full dataset
would take 150 hours to create. This runtime could be
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FIG. 8. IBD Escape Score: energy and angle-based first
Compton probability

FIG. 9. Neutron Escape Score: energy and angle-based first
Compton probability

reduced by coding the program in a faster language and
cutting the tested Compton hits further by how much the
random average escape score is expected to differ from
the center approximation escape score. The principal
case in which these differ is one where positional variance
within the prisms allows for a drastically shorter escape
path, as depicted in figure 3. Thus, these cases- which are
likely responsible for most of the 1-gamma IBDs given a
very low escape score- could be isolated with a geomet-
rical cut to further reduce computation time.

D. Significance Optimization

All of the networks thus far have been trained to min-
imize the sum of squares error between the particle iden-
tity and predicted probability, which incentivizes im-
proving the percent accuracy. This is not the end goal
however– the objective is to draw statistically significant
conclusions about reactor operation in an extremely high-
noise environment. Thus, optimizing the network for
significance with this cost minimization method entails
manually biasing the network towards negative classifi-
cation. This crude method means finding parameters
with good significance has a large element of luck, which
makes training tedious. Additionally, it was found that
networks with more than four input neurons did not train

FIG. 10. A case where the center approximation predicts a
much longer escape path

FIG. 11. Distance between Positron Candidate and First
Compton Candidate

as well as the 4-plane network. This is likely because
larger networks need more training data to perform well,
and the artificial reduction of the IBD data’s contribu-
tion to training hampered the larger networks’ ability to
discern distinguishing characteristics of IBDs. Thus, an
optimization that maximizes significance directly could
speed up the training process and allow the complexity
of larger networks to be exploited fully.
Significance is based on the binary classification of

events, so it is not a continuous function of the net-
work parameters and cannot be optimized via gradient
descent. To remedy this, a continuous version of signif-
icance was created based on the probability prediction
from 0 to 1 for each event:

softsig =
(at)2

(at+ 2bf)

t (for true positive) is the sum of all predicted probabili-
ties for IBD events divided by the number of IBD events
tested, and f (for false positive) is the sum of all predicted
probabilities for neutron events divided by the number of
neutron events tested. t and f are effectively continuous
versions of the false positive proportion and true positive
proportion used in the regular significance calculation. a
and b are constants found by dividing the daily natural
rate of neutrons and IBDs by the number of those events
in the initial simulation set. These parameters convert
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from the rate each type of events occur in the computer
simulation data to the rate each type occur in real life.
To maximize significance, the gradient function for the
parameters needs to be calculated based on the partial
derivative of softsig with respect to t and f. This calcula-
tion yields the following reward functions for signal and
noise events:

RS = a
(at)2 + 4atbf

(at+ 2bf)2

RN = −2b
(at)2

(at+ 2bf)2

When a network trains in the traditional manner– to min-
imize a cost function– it reads through each example in a
training batch and calculates how it needs to change the
prediction for each example to reduce the cost. For the
sum of squared errors cost, the derivative of cost with
respect to predicted probability is given by:

dC = 2(Probability − Correct)

where Correct is 1 for IBDs and 0 for neutrons and Prob-
ability ranges from 0 to 1. This is the starting value for
the back-propagation that follows. Thus, the degree to
which error is reduced does not depend on event type.
However, while augmenting signal and reducing noise are
always good things, doing one compromises the ability
for a network to do the other, so a proper balance be-
tween the two should be found. By taking into account
the inherent rate disparity between signal and noise as
well as the current values of signal and noise, softsig op-
timization finds the balance between augmenting signal
and cutting noise that increases significance the most.
To train network parameters with softsig, the network
first has to read a training batch and calculate the sig-
nal and noise it reads from that batch, and from those
calculate RS and RN. It then reads the batch again and
adjusts parameters through backpropagation, using RS

as the starting value for IBD examples and RN as the
starting value for neutron examples.

When this method was first tested, the significance
climbed quite quickly and then peaked and crashed. This
is likely because the constant learning rate became too
high for the more delicate steps required to fine-tune in
later stages of training. Additionally, RS and RN tend
to become higher for batches with higher significance
and signal-to-noise ratio, so the change requests of worse
batches likely got washed out. This means the network
trained at the expense of the batches it needed to improve
on most. To address this issue, the learning rate was mul-
tiplied by an exponential decay function of significance.
This naturally reduces the learning rate as the network
hones in on the minimum and prioritizes improvement on
batches the network performs the worst on. Training a
4-plane ReLu network with these methods yielded a sig-
nificance of 146 on 2-gammas alone, which was achieved

in a single run with no manual retraining. This outper-
formed the previous 4-plane ReLu network which only
achieved 138 on the 2-gamma set. Furthermore, a 20-
plane network using an arctangent-based activation func-
tion achieved a significance of 156 in one training run on
the 2-gamma set. This outperformed any other classi-
fication method used for the CHANDLER data. Even
with the above tweaks, however, the significance on the
validation set still crashed after the peak.

FIG. 12. The parameters achieved a peak significance and
then wandered out of the maximum

When this was investigated, a bug was found in the
Python code that failed to reset the parameter change
arrays to 0 between training batches. This means that
the reward gradient for each batch acted as the second
derivative of the network parameters, not the first as pre-
viously thought. Thus, the hyperplanes possessed inertia
as they moved through the state space, with gradient
calculations from early in the training process having a
continuing influence on how they moved. Additionally,
a separate bug was found that inflated soft signal and
deflated soft noise by a factor of 1.166, which skewed
the calculation of RS and RN. When either one or both
of these bugs were fixed, however, the network failed to
train at all. No matter how high or low the learning
rate was set, the network always became stuck in false
maxima where all events were classified as IBDs. Thus,
inertia and gradient warping were necessary for the net-
work to get off the ground. Nonetheless, when the 156-sig
parameters were trained with the bugs fixed, significance
climbed to 169 for the 2-gamma set. As expected, the
inertia and gradient warping bugs were responsible for
the significance crash in the later stages of training. To
train a new set of parameters of this caliber, the old code
with inertia and warped gradient bugs must be used until
the network exceeds approximately 150 significance, and
then switched out for the fixed code to train it the rest
of the way.
Training this network on the 1-gamma dataset, how-

ever, produced a significance of at most 3. Thus, it may
be profitable to include 2-gamma events in the training
set for the 1-gamma network because they may help guide
it towards identity boundaries, as this network underper-
formed the 4-plane ReLu network from earlier. When the
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20-plane arctan network’s 2-gamma results and 4-plane
ReLu’s 1-gamma results were merged, a significance of
174 was achieved. Notably, to achieve this gain, the final
bias of the latter network had to be manually reduced.
This is because significances only add when the signal-
to-noise ratio of the two outputs are the same, and the
addition becomes worse as the signal-to-noise ratio dif-
fers. To optimize data merging, the output bias of the
4-plane ReLu network was manually adjusted downward
until the signal-to-noise ratio of the 1-gamma output was
comparable to that of the 2-gamma output. In an at-
tempt to optimize the cooperation of the two networks,
the network training on 1-gamma events used the final
soft signal and noise of the 2-gamma network added to its
own current soft signal and noise in the reward function
calculations in order to optimize the combined signifi-
cance. This approach led nowhere, however, because the
1-gamma network trained in this way could not find a
classification strong enough to contribute to significance,
so it resorted to classifying all 1-gamma events as neu-
trons. Thus, the 4-plane ReLu network trained using
crude cost minimization was still the best performer on
1-gamma events.

E. Justification for Neural Networks

A common criticism of neural networks is that they are
black box classifiers– it just magically works, and it is im-
possible to know what is going on under the hood of the
network. For neural networks with deep architectures,
this is often the case. For example, when a network is
trained to recognize handwritten digits, one may expect
the first layer to pick up on small edges, the second to
pick up on larger loops and lines, and the third to put
those together into the digit’s identity. When one looks
at a weight map of a first layer neuron projected onto
the writing space, however, it looks like a random, un-
intelligible mess [3]. Thus, the mechanism by which the
network classifies digits is hidden from human interpre-
tation. For shallow networks like the ones discussed here,
however, the weight maps are easy to understand– it is
simply including parts of the variable space with a high
ratio of signal to noise, and excluding parts of the variable
space with a ratio that is too low. This can be seen by
picking two variables to analyze, plotting 2-d histograms
of the IBD and Neutron data, and comparing these to
a 2-d plot of the score given by the network to differ-
ent parts of the phase space. Upon doing this, one can
see that the network is drawing boundaries in the phase
space that are similar to what a person manually looking
at the dataset and hand-drawing lines would make. Ad-
ditionally, because noise outweighs signal by an extreme
ratio, the network is sufficiently averse to including noise
that it will exclude a significant amount of signal to avoid
it.

A criticism of neural networks for particle physics in
particular is that the network can pick up on patterns in

FIG. 13. Histograms demonstrating neural network cuts in
different variables. Left column: IBD histogram. Middle col-
umn: neutron histogram. Right column: network score plot.

the computer training data that do not exist in real life.
However, this is true of any type of classification informed
by computer simulations. Both decision trees and per-
ceptrons approximate curved classification boundaries in
the phase space through a sum of simpler components–
the major difference is the decision tree’s boundaries have
a saw-tooth edge from the restriction that all classifica-
tion planes are perpendicular to a basis vector. Thus,
there is no reason why a shallow neural network is more
vulnerable to computer simulation patterns than a deci-
sion tree. If the neural network was deep enough to allow
for many space transformations, it would be possible for
the network to pick up on patterned fluctuations from
simulation irregularities. However, because all networks
discussed here have only one processing layer, they are
restricted to drawing simple boundaries and are thus no
more vulnerable to computer simulation deception than
a decision tree.

IV. SPECTRUM-BASED EVALUATION AND
OPTIMIZATION

The final goal of the CHANDLER project is to deter-
mine the contents of a nuclear reactor by measuring its
neutrino spectrum. The current significance parameter
does not directly quantify how effective a detector and
its classification software are at spectral measurement. A
simple way to do this is to make histograms of the true
and predicted IBD spectra and compare. To make the
predicted spectrum, run a set of IBDs and neutrons with
the expected spectra of a real deployment through the
processing pipeline, scale both event types by the real-
life rates of IBDs and neutrons, and add them together.
The result is the predicted antineutrino spectrum of the
reactor. This can be compared to the truth spectrum of
the input IBD events to discern how effectively the clas-
sification pipeline preserved the spectrum through the
noise. An important question is whether an optimiza-
tion algorithm should take into account positron energy
in the parsing of IBDs from neutrons or remain blind
to this metric to prevent the classification process from
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influencing the spectrum. To answer this question, the
20-plane architecture mentioned above was trained with
and without positron energy as an input variable and the
predicted spectra of the resulting parameters were plot-
ted.

FIG. 14. Truth Spectrum

FIG. 15. Measured spectrum without positron energy train-
ing

FIG. 16. Measured spectrum with positron energy training

Even though both networks achieved similar signifi-
cance (156 with positron energy and 155 without), the
network that uses positron energy as a classifying con-
dition produces a more accurate spectrum shape. This
is because the network with positron energy can make

tighter cuts in the energy regimes where neutrons are
most common, reducing their ability to distort the spec-
trum. This can be seen when the false positive neutrons
are graphed alone, as the low-energy peak is much less
prevalent in the positron-influenced output.

FIG. 17. Neutron contribution to measured spectrum without
positron energy training

FIG. 18. Neutron contribution to measured spectrum with
positron energy training

Thus, including positron energy as a classifying vari-
able prevents spectrum distortion as opposed to causing
it. Nonetheless, neither spectrum is perfect, and a way
to quantify and optimize on spectral accuracy directly
could be useful.
A chi squared score can be calculated between the pre-

dicted and truth spectra after both are normalized by
dividing the events per bin of both by the total number
of events in each histogram. The chi squared or sum of
squared difference between the actual and predicted his-
togram can then be used as a cost function for machine
learning to minimize. If the number of events in a certain
energy bin needs to be reduced by x amount to match the
actual and predicted spectra, this value can serve as the
starting cost derivative for backpropagation of training
examples in that energy range. To execute this, a similar
procedure could be used as with the softsig optimization:
run a training batch and compare the true and predicted
spectra, record the cost derivative for each energy bin,
and run backpropagation for the events in each energy
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bin using the cost derivative as the starting value. To
avoid training the algorithm to always produce the same
spectrum, a variety of spectra must be used as a train-
ing set. If one wants the algorithm to accurately identify
an arbitrary neutrino spectrum, a wide variety of ran-
dom spectra can be used as training data. However, if
one cares the most about identification of a few select
spectra– say, the spectrum of uranium fission vs that of
plutonium breeding– then the training set can be limited
to those spectra. This would result in an algorithm that
is very good at distinguishing between these two possibil-
ities at the expense of spectral accuracy in more general
situations. Before energy spectrum training, however,
the algorithm should be trained to maximize significance.
This is because the above method of spectrum training
does not take into account the type of event making up
the spectrum, so it should be ensured beforehand that
the algorithm has learned an effective way to separate
IBDs from neutrons.

V. FUTURE WORK

A. Obtaining Real Training Data

If one desires to eliminate the possibility of computer
simulation inaccuracies entirely, real-life test data can be
gathered of signal and noise alone. To sample isolated
IBD data, CHANDLER could be deployed underneath
a commercial nuclear reactor so the cooling water could
shield from cosmic ray neutrons. Alternatively, the detec-
tor could be placed deep underground along with a small
experimental fission reactor or even a strong beta decay
source. To sample neutrons alone, CHANDLER can be
deployed anywhere away from a fission reactor with a
lead overburden to eliminate gamma and charged parti-
cle backgrounds. Unfortunately, this requires the detec-
tor to be currently built and operational, which is not
the case for CHANDLER. Thus, obtaining real training
data at this stage is simply not possible. However, once
CHANDLER is operational, obtaining real-life training
data for analysis algorithms will be an important step in
preparation for nonproliferation deployments.

B. Training Improvements

The most obvious way to improve the classification
aptitude of the above networks is to add more process-
ing layers, which would allow the network to draw deci-
sion boundaries that are smooth curves. This could im-
prove the isolation of signal significantly because IBDs
often collect in ellipsoidal ”islands” in the phase space
histograms. Through the making of network score his-
tograms like figure 13, the inner workings of the network
can remain transparent as more layers are added.

Another area of improvement lies in the 1-gamma

events, as no network was able to train successfully on
that set alone. Firstly, the implementation of a monte-
carlo escape probability could reduce the number of 1-
gamma IBDs falsely given a low score, improving dis-
crimination between event types. Additionally, some 2-
gamma events could be introduced at the start of gradi-
ent ascent to guide the parameters to the best maximum
and then removed later to optimize on 1-gammas specif-
ically. Optimizing on signal/noise ratio or significance
multiplied by signal/noise ratio might also train the 1-
gamma network to collaborate better with the 2-gamma
network. Furthermore, the 1 and 2-gamma datasets can
be segmented based on maximum angle between Comp-
ton hits and whether a line passing through two Compton
hits and a positron hit in between can be drawn. These
different segments of data have different properties, so
training separate networks on each could allow them to
exploit the unique clustering characteristics of IBDs in
each regime.

FIG. 19. Multiplicity vs Total Compton Energy: IBD distri-
butions of different segmentations by SoLid clustering, best
pairing angle, and geometry passes.

Finally, a significance parameter that evaluates how
effectively an analysis algorithm can detect a spectral
change should be created. This would allow for a training
procedure that directly optimizes the ability to discrim-
inate between uranium and plutonium neutrino spectra,
which is the end goal of the CHANDLER project.
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