Passive Attenuation to Allow Muon Callibration of NuLat Detector

Andrew Gunsch, Coe College

INTRODUCTION

Neutrinos present numerous paths to discovering physics beyond the Standard Model. In order to make the observations and take the measurements needed to discover such phenomena, innovative neutrino detection methods must be used. The NuLat (Neutrino Lattice experiment) is a neutrino detector with a novel geometry that can be used to identify the particle interactions occurring within it. Before it can be used to observe these events, the detector needs to be calibrated.

BACKGROUND

Neutrinos are tiny particles with neutral charge. They come in three flavors, one for each of the charged leptons.

Through neutrino oscillation, neutrinos can change flavor and mass^[1]. However, under the Standard Model, neutrinos should be massless^[2]. Studies of neutrino oscillation have founded unexpected changes in flavor that suggest the possibility of a sterile neutrino^[1].

The NuLat detector is a 5x5x5 lattice of cubes that emit light when they interact with energetic particles. On three of its faces, there are 25 photomultiplier tubes, which collect light from the cubes and send an electric signal proportional to the number of photons they receive.

NuLat primarily strives to detect antineutrinos through the Inverse Beta Decay (IBD) reaction, in which an electron antineutrino interacts with a proton to produce a neutron and a positron^[1]. To detect the neutron capture and positron-annihilation signals that come of this, NuLat is designed to read signals of around 2 $MeV^{[2]}$.

NuLat can be calibrated with muons, for their average energy deposition in a plastic scintillator is 2MeV/cm. Unfortunately, this results in 12.7MeV per cube, saturating the **system**, leaving no way to measure the signal for calibration.

Fig. 1: By detecting the location of the signal on each face of NuLat, the location of the event can be determined.

Fig. 2: The signal of a muon is cut off at the limit of the range, leaving no accurate value for its energy.

METHODS

To avoid saturation of the muon signal, resistive pads were constructed. To attenuate the muon signal by a factor of one-tenth, about 500 Ω resistance were needed. I used 470 Ω resistors. On two boards, there were 220 nF capacitors linking 32 RG-58 coaxial cables from the photomultiplier tubes with 32 connections to a path that split between a 50 Ω resistor and the transient digitizer.

The existing connections were removed, the lengths of the capacitor components were shortened, and the new resistors were soldered to the boards. The boards were plugged into the transient digitizers and data was collected.

The detector's data collection is triggered when coincidence occurs on both of the two isolated cubes beneath the center of the detector. These two cubes are placed vertically so that the system triggers on muons traveling vertically through the middle of the detector.

Fig. 5: A muon signal to the digitizer is attenuated, so the full height of the signal is counted. In this event. one particular photomultiplier tube receives most of the energy.

When events were found to have only one channel or a few channels responsible for most of the energy, they were deemed possible muons. For these events, the responses from each photomultiplier tube were integrated to determine the event's location. Muon events through the same vertical channel were then simulated using a Fortran algorithm designed to calculate the behavior of light rays in the NuLat detector.

RESULTS

simulation.

The energy distribution between the two events is similar to the simulated event. The simulated muon gradually loses energy during its descent, while the real event shows high energy at the top and bottom, but not in the center. The central 3x3x3 cubes of the detector are doped with Lithium-6, giving them a different lightyield compared to the other cubes. It seems clear that this is a real muon event.

CONCLUSION

The pads reduced the amplitude of the signals enough for the detector to measure the energy of a muon.

Now that the detector can record a muon event without losing the scale of the signal due to saturation, NuLat may begin to be calibrated to muons. Then the current attenuator pads can be replaced with variable-ranged voltage dividers, so that the same detector configuration can perform muon calibration and detect antineutrinos.

BIBLIOGRAPHY

- detector," 2017.
- Lattice," 2016.

ACKNOWLEDGEMENTS

- NSF REU
- Virginia Tech Center for Neutrino Physics
- Dr. R. Bruce Vogelaar
- NuLat Colaboration

An event was discovered that behaved like a muon passing vertically through the center of the detector. On the front and left faces, the middle column showed the greatest output, with more energy at its top and bottom than at its center. The highest signal on the top face comes from its central channel, with its adjacent cubes also showing more energy than those further away. This event was compared to

Top Face								Ex	Experimental Muon: Top Face				
0	0							0	4788	25794	3286	4835	
12	1							1557	1184	25652	4258	2037	
312	62							3938	17607	139291	9292	5510	
6	1							11253	0	49226	143	1747	
0	0							2823	13078	14781	0	25847	
Front Face			Experimental Muon: Left Face					Experimental Muon: Front Face					
			E	perimen	ital Muon:	: Left Fa	ce	Exp	eriment	al Muon:	Front F	ace	
82	10		Ex 2719	perimen 19853	ital Muon: 158553	Left Fa 26588	ce 32834	Exp 9480	eriment 10947	al Muon: 70289	Front F 26985	ace 13195	
82	10		2719	19853	158553	26588	32834	9480	10947	70289	26985	13195	
82 55	10 22		2719 14413	19853 6592	158553 132180	26588 7610	32834 6268	9480 14763	10947 13864	70289 42742	26985 5718	13195 0	
82 55 59	10 22 19		2719 14413 4121	19853 6592 8782	158553 132180 75459	26588 7610 6305	32834 6268 3748	9480 14763 0	10947 13864 9191	70289 42742 11486	26985 5718 14832	13195 0 8065	

..]X. Ding. "Development and calibration of NuLat, A new type of neutrino

2. Z. Yokely. "Solar and Sterile Neutrino Physics with the Raghavan Optical

