

Designing Data Read Out Electronics for the CHANDLER Neutrino Detector Jah'Shawn Ross, North Carolina Central University with the Virginia Tech Center for Neutrino Physics REU

Introduction

CHANDLER (Carbon Hydrogen ANtineutrino Detector with a Lithium Enhanced Raghavan optical lattice) is a reactor neutrino detector technology. The CHANDLER technology consists of layers of wavelength shifting plastic scintillator cubes separated by thin sheets of lithium-6 loaded zinc sulfide. In inverse beta decay, when an electron antineutrino scatters off a proton, it creates a positron and a neutron. Lithium-6 is used to capture the neutron. The light that is produced by the scintillator cubes is then guided to the PMTs by total internal reflection.

Read Out Firmware

The FPGA uses VHDL as the coding firmware. The running baseline co characterizes the baseline allowing the pretrigger window to be analyze baseline will send out the sum of the ADC counts, moving average, ADC squared, sum of ADC squared, and moving average squared. These al as important indicators to compensate for the running baseline not bein Two pretrigger windows are expected. These are a relatively flat baselin exponential decay.

Neutron Hit Simulation

/chanderrunningbaseline_vhd_tst/ADC	489	X (200	202	(199	(203	204	216	262	371	(563	734	(1034	(967	822	710	(593)
/chanderrunningbaseline_vhd_tst/i1/sum	7569	0	202	401	(604	(808	(1024	(1286	1657	2220	2954	(3988	(4955	5777	(6487	(7080)
/chanderrunningbaseline_vhd_tst/i1/xsquared	239121	0	(40804	39601	41209	(41616	(46656	(68644	137641	316969	538756	1069156	935089	675684	(504100	(351649)
/chanderrunningbaseline_vhd_tst/i1/MA	442	X	0	12	(25	137	<u>) 50</u>	(64	(80	(103	138	(184	(249	309	(361	(405)
/chanderrunningbaseline_vhd_tst/i1/MASquared	164025	0		0	(144	(625	(1369	(2500	, 4096	(6400	10609	(19044	(33856	62001	(95481	(130321)
/chanderrunningbaseline_vhd_tst/i1/XSquareOverN	300473	0		2550	(5025	<u>)</u> 7600	10201	13117	17408	(260 10	(45821	(79493	(146315	204758	246989	(278495)
/chanderrunningbaseline_vhd_tst/i1/XSquaredSum	4807574	0		40804	(80405	121614	163230	(209886	278530	416171	733140	1271896	2341052	3276141	3951825	(4455925)
/chanderrunningbaseline_vhd_tst/dk	1															

Neutron Decay Simulation

/chanderrunningbaseline_vhd_tst/ADC	-No Data-	X (7500	<u> 10500</u>	19800	<u>į 10000</u>	<u> 18200 </u>	<u> (6000</u>	<u> X 5500</u>	4700	<u> 14000 x 4000 x 400</u>	<u>1,3400</u>	<u> X</u> 3000	<u>į 2700</u>	2200	<u>į 2000</u>	<u>(1850</u>)
/chanderrunningbaseline_vhd_tst/i1/sum	-No Data-	0	(10500	20300	(30300	(38500	(44500	<u>(5000p</u>	54700	(58700	(62100	(65100	(67800	70000	72000	(73850)
/chanderrunningbaseline_vhd_tst/i1/xsquared	-No Data-	0	110250000	96040000	(100000000	(67240000	(36000000	30250000	22090000	(16000000	(11560000	<u>) 9000000 (</u>	(7290000	4840000	(4000000	(3422500)
/chanderrunningbaseline_vhd_tst/MA	-No Data-	X	0	656	(1268	(1893	(2406	2781	3125	(3418	3668	(3881	(4068	4237	4375	(4500)
/chanderrunningbaseline_vhd_tst/i1/MASquared	-No Data-	0		0	(430336	1607824	3583449	(5788836	7733961	9765625	11682724	13454224	15062161	16548624	17952169	(19140625)
/chanderrunningbaseline_vhd_tst/i1/XSquareOverN	-No Data-	0		6890625	12893125	19143125	23345625	25595625	27486250	28866875	29866875	30589375	31151875	31607500	31910000	(32160000)
/chanderrunningbaseline_vhd_tst/i1/XSquaredSum	-No Data-	0		110250000	206290000	(306290000	373530000	(409530000	439780000	461870000	477870000	(489430000	(498430000	505720000	510560000	(514560000)
/chanderrunningbaseline_vhd_tst/dk	-No Data-															

Old Electronics

The old electronics for MiniCHANDLER consisted of shapers and CAEN digitizers with a 12-bit ADC. The 12-bit ADC was not able to effectively measure higher energy neutron proton recoils, because it exceeds the range. Another problem with the old electronics was that there was cross-talk between neighboring channels, due to the single-ended input of the PMT signal. Moreover, the trigger algorithm would fail under high energy pulses, because it would cause large oscillations in the baseline. These oscillations caused retriggers and at times the inability to read low pulse height neutron signals. If the trigger threshold was set to a normal level the digitizer would send too much information, using too much bandwidth. To compensate for this the trigger threshold was raised, which led to missing vital information.

New Electronics

	Running Baseline Code (MA/Sum)
ode ed. The running C values Il could be used ng perfectly flat. ne and	<pre>Running Baseline Code (MA/Sum</pre>

- "Measurement of Proton Quenching in a Plastic Scintillator Detector." Journal of

- 242https://vtechworks.lib.vt.edu/bitstream/handle/10919/100738/Li S D 2020.p