

of the particle. Double Deeply Virtual Compton • W_tot: Proportional to measured events Scattering (DDVCS) aims to expand Generalized Parton Distributions (GPDs), currently the most detailed structure function.

The GDPs rely on the virtual photon p Q² and Q'^2 , the nucleon **p** t, bjorken x, and angles; θ_{CM} , $\boldsymbol{\phi}_{CM}$, and $\boldsymbol{\phi}_{I}$.

Two motivations incentivize our study into DDVCS, the ability to extrapolate new GPDs and potential universality. In DDVCS, $\xi \neq \pm \xi'$, which decouples x and ξ . This region provides new ideas about nuclear forces and parton densities. **Current theories expect GPDs to be universal for** all scattering experiments, but there is no experimental proof. DDVCS reactions have the ability to compare GPDs in spacelike and timelike regions to assess the validity of the universality.

- potential for physical interpretation

normalized weights by These are

[4] Thomson, Mark. "Particle Physics," 2011.