Constraining Beyond the Standard Model Sub-MeV Neutrino Fluxes Using the XENONnT Detector

Noah Chavez¹, Amy Flather², Professor Ian Shoemaker³

1: Amherst College, 2: Rutgers University, 3: Virginia Tech

Sources of Neutrino Fluxes

- The sun, atmospheric interactions, and other sources produce neutrinos
- No sub-MeV neutrinos have been detected
- This work constrains neutrino fluxes at these low energies

Methodology: Hypothetical Flux to Event Rate to Constraint 1.0×10^{5} 9.0×10^4 2. Calculate expected recoil events 3. Constrain flux strength using statistics! 1. Create flux with variable height

Beyond the Standard Model Neutrino Fluxes

- Neutrino oscillations show that neutrinos have
- Various BSM models such as decaying dark
- We can rule out BSM models by applying flux

- mass and require BSM physics
- matter and primordial black holes predict sub-MeV neutrino fluxes
- constraints

The XENONnT Detector

- XENONnT has great sensitivity because it is a dark matter direct detection experiment
- Measures electron recoils in the (1-30)keV energy range

Results: The first sub-MeV BSM neutrino constraints

- Using XENONnT, we obtain a model-independent neutrino flux constraint of $10^{5} (cm^{2} * s * eV)^{-1}$
- First constraints from 16keV to 1.8MeV
- This work helps to determine the validity of BSM models
- Future detectors with greater exposure and lower threshold will place stronger constraints

References

- [1] E. Aprile et al. (XENON)
- [2] E. Vitagliano et al.
- [3] R. Essig, M. Sholapurkar, and T.-T. Yu
- [4] T. Schwemberger and T. T. Yu
- [5] R.L Workman et al. (PDG)

Acknowledgements

We are grateful to the Virginia Tech REU program for support. We would also like to thank Professor Ian Shoemaker for his guidance throughout this work.

The work of IMS is supported by DOE under the award number DE-SC0020250.

This work was supported by the NSF with the award number PHY-2149165.

