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Introduction Coincidence Analysis
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the pulse shaping parameters to result in increased energy resolution and
linearity for both detectors.
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determine how many of our detected coincidence events were emitted from the source. We
compared the rate of emission for certain gamma rays from a 0.104 uCi Na?2 source and a 0.05
uCi Co®® source to determine the efficiencies
of the detectors and estimate the expected
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Figure 2: ADC counts vs. Energy to show
detector linearity for VTGe4
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in the top right is an illustration of the Ge crystal geometry.
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Figure 5: Energy Resolution-Energy distribution for common radioisotopes in the U238,

Th?32, and K%° decay chains commonly found in background measurements. Graph made
with LoggerPro Software.

get the predicted inverse square relation.
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The difference in crystal thickness may explain why we did not
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1332 keV events (red) and 1173 keV events (blue). The image

Figure 12: Number of 1173 keV 1332 keV coincidence events

detected over time in hour-long intervals. This informs us of the
long-term stability of the coincidence set-up over time. Data was
collected with 1 uCi of Co® 10 cm from each detector.
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Results and Applications

After finding successful coincidence events with low contamination with
accidental background, our group tested several of the applications of the
multiple detector set-up. Potential applications include:

AR

* Measuring the angular correlation of emitted gamma rays
» Testing Compton scattering from one detector to another
» Precise localization of emitted gamma rays

» Screening of materials for present radioisotopes
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Our group measured the angular correlation |
Figure 13: y-y angular

of the detector set-up with a sample of Co®® by distribution for Co® L /\ _
measuring the 1173 keV and 1332 keV y-ray \/
emissions. The angular distribution of a y-ray fx S
depends on the spin axis of the nucleus from
which they are emitted.
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The probability of the second y-ray to be emitted at an angle 0 is called angular

correlation factor Wy =1+ %cosz(e) + 2—14cos4(9)

Measurements were taken over a 9-day period and each detector change was
recorded with a timestamp. As we analyzed the data, we began to see no
coincidence events later into the angular correlation run. This called into question
the stability of the set-up for long periods of time.

Conclusion

Our group was successfully able to detect and identify coincidence events for
specific gamma rays and localize them to the tested radioactive source. We were
able to double the resolution of the detectors by modifying the energy thresholds to
300 Isb for VTGe3, 70 Isb for VTGe4, and doubling the coarse gain of VTGe4. Near
the end of our project, we discovered a potential issue with the stability of the
detector over long run times Our next step is to take data for a weeklong run and
analyze how the number of coincidence events changes over time under non
changing conditions to test for corruption in the timestamp over time.
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